Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2470
DC FieldValueLanguage
dc.contributor.authorallOlsen, K. B.; Department of Geological Sciences, San Diego State Universityen
dc.contributor.authorallAkinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMarra, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-09-14T09:47:46Zen
dc.date.available2007-09-14T09:47:46Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2470en
dc.description.abstractPaleoseismic evidence and seismic-hazard analysis suggest that the city of Rome, Italy, has experienced considerable earthquake ground motion since its establishment more than 2000 years ago. Seismic hazards in Rome are mainly associated with two active seismogenic areas: the Alban Hills and the Central Apennines regions, located about 20 km southeast and 80–100 km east of central Rome. Within the twentieth century, M 6.8 and M 5.3 earthquakes in the Apennines and the Alban Hills, respectively, have generated intensities up to Mercalli-Cancani-Sieberg scale (MCS) VII in the city. With a lack of strong-motion records, we have generated a 3D velocity model for Rome, embedded in a 1D regional model, and estimated long-period ( 1 Hz) ground motions for such scenarios from finite-difference simulations of viscoelastic wave propagation. We find 1-Hz peak ground velocities (PGVs) and peak ground accelerations (PGAs) of up to 14 cm/sec and 44 cm/sec2, respectively, for a M 5.3 Alban Hills scenario, largest near the northwestern edge of the Tiber River. Our six simulations of a M 7.0 Central Apennine scenario generate 0.5-Hz PGVs in Rome of up to 9 cm/sec, as well as extended duration up to 60 sec. The peak motions are similar to, but the durations much longer than those from previous studies that omitted important wave-guide effects between the source and the city. The results from the two scenarios show that the strongest ground-motion amplification in Rome occurs in the Holocene alluvial areas, with strong basin edge effects in the Tiber River valley. Our results are in agreement with earlier 2D SHwave results showing amplification of peak velocities by up to a factor of 2 in the alluvial sediments, largest near the contact to the surrounding Plio-Pleistocene formations. Our results suggest that both earthquakes from the Alban Hills and the Central Apennines regions contribute to the seismic hazards in Rome. Although earthquakes from the former area may generate the larger peak motions, seismic waves from the latter region may generate ground motions with extended durations capable of causing significant damage on the built environment.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBull. Seismol. Soc.en
dc.relation.ispartofseries1/ 96 (2006)en
dc.subjectGround-Motionen
dc.subject3-Den
dc.title3D Ground-Motion Estimation in Rome, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber133-146en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1785/0120030243en
dc.relation.referencesAmato, A., C. Chiarabba, M. Cocco, M. Di Bona, and G. Selvaggi (1994). The 1989–1990 seismic swarm in the Alban Hills volcanic area, central Italy, J. Volcanol. Geotherm. Res. 61, 225–237. Ambrosini, S., S. Castenetto, F. Cevolan, E. Di Loreto, R. Funiciello, L. Liperi, and D. Molin (1986). Risposta sismica dell’area urbana di Roma in occasione del terremoto del Fucino del 13-1-1915, Mem. Soc. Geol. Ital. 35, 445–452. Basili, A., L. Cantore, M. Cocco, A. Frepoli, L. Margheriti, C. Nostro, and G. Selvaggi (1996). The June 12, 1995 microearthquake sequence in the City of Rome, Ann. Geofis. 39, no. 6, 1167–1175. Boschi, E., A. Caserta, C. Conti, M. Di Bona, R. Funiciello, L. Malagnini, F. Marra, G. Martines, A. Rovelli, and S. Salvi (1995). Resonance of subsurface sediments: an unforeseen complication for designers of roman columns, Bull. Seism. Soc. Am. 85, no. 1, 320–324. Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef (1985). A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics 50, 705–708. Chiarabba, C., L. Malagnini, and A. Amato (1994). Three-dimensional velocity structure and earthquake relocation in the Alban Hill volcano, central Italy, Bull. Seism. Soc. Am. 84, 295–306. Cifelli, F., S. Donati, F. Funiciello, and A. Tertulliani (2000). High-density macroseismic survey in urban areas, part 2: results for the city of Rome, Italy, Bull. Seism. Soc. Am. 90, no. 2, 298–311. Clayton, R., and B. Engquist (1977). Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am. 71, 1529– 1540. Day, S. (1998). Efficient simulation of constant Q using coarse-grained memory variables, Bull. Seism. Soc. Am. 88, 1051–1062. Day, S. M., and C. Bradley (2000). Memory-efficient simulation of anelastic wave propagation, Bull. Seism. Soc. Am. 91, 520–531. Donati, S., R. Funiciello, and A. Rovelli (1999). Seismic response in archaeological areas: the case histories of Rome, J. Appl. Geophys. 41, 229–239. Fa¨h, D., C. Iodice, P. Suhaldoc, and G. Panza (1993). A new method for the realistic estimation of seismic ground motion in megacities: the case of Rome, Earthquake Spectra 9, 643–667. Fa¨h, D., C. Iodice, P. Suhaldoc, and G. Panza (1995). Application of numerical simulations for a tentative seismic microzonation of the city of Rome, Ann. Geofis. 38, no. 5–6, 607–616. Frankel, A., and J. Vidale (1992). A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock, Bull. Seism. Soc. Am. 82, 2045–2074. Funiciello, R., L. Lombardi, F. Marra, and M. Parotto (1995). Seismic damage and geological heterogeneity in Rome’s Colosseum area: are they related? Ann. Geofis. 38, no. 5-6, 927–938. Graves, R. (1996). Simulating seismic wave propagation in 3D media using staggered-grid finite differences, Bull. Seism. Soc. Am. 86, 1091– 1106. Gruppo di Lavoro CPTI (1999). Catalogo Parametrico dei Terremoti Italiani, Instituto Nazionale di Geofisica (ING), Gruppo Nazionale par la Difesa dai Terremoti (GNDT), Storia Geofisica e Ambiente (SGA), Servizio Sismico Nazionale (SSN), Bologna, 92 pp. Hadjian, A. H. (1993). The Spitak, Armenia earthquake of 7 December 1988—Why so much destruction? Soil Dyn. Earthquake Eng. 12, 1–24. Iodice, C., D. Fa¨h, P. Suhadolc, and G. F. Panza (1992). Un metodo generale per la zonazione sismica immediata ed accurata di grandi metropoli: applicazione alla citta di Roma, Rend. Fis. Acc. Lincei, 9, no. 3, 195–217. Kawase, H. (1996). The cause of the damage belt in Kobe: the basin-edge effect, constructive interference of the direct S-wave with the basininduced diffracted/Rayleigh waves, Seism. Res. Lett. 67, 25–34. Malagnini, L., R. B. Herrmann, G. Biella, and R. de Franco (1995). Rayleigh waves in Quaternary alluvium from explosive sources: determination of shear-wave velocity and Q structure, Bull. Seism. Soc. Am. 85, 900–922. Marra, F., and C. Rosa (1995). Stratigrafia e assetto geologico dell’area romana, in Mem. Descr. Carta Geol. Ital. La Geologia di Roma. Il Centro Storico 50, 49–118. Molin, D., and E. Guidoboni (1989). Effetto fonti effetto monumenti a Roma: i terremoti dall ‘antichita` ad oggi, in l terremoti prima del Mille in Italia e nell’ Area Mediterranea, E. Guidoboni (Editor), ING, Bologna, 194–223 (in Italian). Molin, D., S. Castenetto, E. Di Loreto, E. Guidoboni, L. Liperi, B. Narcisi, A. Paciello, F. Riguzzi, A. Rossi, A. Tertulliani, and G. Traina (1995). Sismicita`, in Mem. Descr. a Carta Geol. Ital. La Geologia di Roma Il centro storico, R. Funiciello (Editor), 50, 323–408. Motosaka, M., and M. Nagano (1997). Analysis of amplification characteristics of ground motions in the heavily damaged belt zone during the 1995 Hyogoken-Nanbu earthquake, Earthquake Eng. Struct. Dyn. 26, no. 3, 877–395. Olsen, K. B. (2000). Site amplification in the Los Angeles Basin from 3D modeling of ground motion, Bull. Seism. Soc. Am. 90, S77–S94. Olsen, K. B., and R. J. Archuleta (1996). Three-dimensional simulation of earthquakes on the Los Angeles Fault System, Bull. Seism. Soc. Am. 86, 575–596. Olsen, K. B., and G. T. Schuster (1995). Causes of low-frequency ground motion amplification in the Salt Lake Basin: The case of the vertically- incident P wave, Geophys. J. Int. 122, 1045–1061. Olsen, K. B., S. M. Day, and C. R. Bradley (2003). Estimation of Q for long-period ( 2 s) waves in the Los Angeles Basin, Bull. Seism. Soc. Am. 93, 627–638. Olsen, K. B., J. C. Pechmann, and G. T. Schuster (1995). Simulation of 3-D elastic wave propagation in the Salt Lake Basin, Bull. Seism. Soc. Am. 85, 1688–1710. Pantosti, D., G. D’Addezio, and F. R. Cinti (1996). Paleoseismicity of the Ovindoli-Pezza fault (Central Italy): a history including a large, previously unrecorded earthquake in Middle Ages (886–1300 A.D.), J. Geophys. Res. X, 5937–5959. Pitarka, A., K. Irikura, T. Iwata, and T. Kagawa (1996). Basin structure effects in the Kobe area inferred from the modeling of ground motions from two aftershocks of the January 17, 1995, Hyogoken-nanbu earthquake, J. Phys. Earth 44, 563–576. Rovelli, A., A. Caserta, L. Malagnini, and F. Marra (1994). Assessment of potential strong ground motion in the city of Rome, Ann. Geofis. 37, no. 6, 1745–1769. Rovelli, A., L. Malagnini, A. Caserta, and F. Marra (1995). Using 1-D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome, Ann. Geofis. 38, no. 5-6, 591–605. Salvi, S., E. Boschi, M. Di Bona, R. Funiciello, L. Malagnini, F. Marra, and A. Rovelli (1991). Subsurface geology and variations of seismic response in the city of Rome, in Fourth International Conference on Seismic Zonation, Stanford, California, 26–28 August 1991, 115–122. Seekins, L. C., and L. C. Boatwright (1994). Ground motion amplification, geology, and damage from the 1989 Loma Prieta earthquake in the city of San Francisco, Bull. Seism. Soc. Am. 84, 16–30. Sieberg, A. (1930). Geologie der Erdbeben, Handb. Geophys. 2, no. 4, 550–555. Singh, S. K., E. Mena, and R. Castro (1988). Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake, and ground motion amplification in and near Mexico City from strong motion data, Bull. Seism. Soc. Am. 78, 451–477. Tertulliani, A., and F. Riguzzi (1995). Earthquakes in Rome during the past one hundred years, Ann. Geofis. 38, no. 5-6, 581–590. Valensise, G., and D. Pantosti (Editors) (2001). Database of potential sources for earthquakes larger than M 5.5 in Italy, Ann. Geofis. 44 (Suppl. 1), with CD-Rom. Wald, D. J., and R. W. Graves (1998). The seismic response of the Los Angeles Basin, California, Bull. Seism. Soc. Am. 88, 337–356. Wald, D. J., and T. Heaton (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seism. Soc. Am. 84, 668–691. Yomogida, K., and J. T. Etgen (1993). 3-D wave propagation in the Los Angeles basin for the Whittier Narrows earthquake, Bull. Seism. Soc. Am. 83, 1325–1344.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorOlsen, K. B.en
dc.contributor.authorAkinci, A.en
dc.contributor.authorRovelli, A.en
dc.contributor.authorMarra, F.en
dc.contributor.authorMalagnini, L.en
dc.contributor.departmentDepartment of Geological Sciences, San Diego State Universityen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geological Sciences, San Diego State University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-8073-3420-
crisitem.author.orcid0000-0002-4881-9563-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1286.pdf952.58 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

30
checked on Feb 10, 2021

Page view(s) 50

210
checked on Apr 24, 2024

Download(s)

30
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric