Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2400
DC FieldValueLanguage
dc.contributor.authorallMisiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTaddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRomano, C.; Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Romeen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLongo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallPapale, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallPoe, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-08-31T07:36:29Zen
dc.date.available2007-08-31T07:36:29Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2400en
dc.description.abstractViscosity of hydrous trachytes from the Agnano Monte Spina eruption (Phlegrean Fields, Italy) has been determined at 1.0 GPa and temperatures between 1200 and 1400 °C using the falling sphere method in a piston cylinder apparatus. The H2O content in the melts ranged from 0.18 to 5.81 wt.%. These high-temperature hydrous viscosities, along with previous ones determined at low-temperature (anhydrous and hydrous) and at high-temperature (anhydrous), at 1 atm on the same melt composition, represent the only complete viscosity data set available for K-trachyticmelts, frommagmatic to volcanic conditions.Viscosity decreases with increasing temperature andwater content in the melt.At constant temperature, viscosity appears to significantly decreasewhen the first wt.% ofH2Ois added.At H2O content higher than 3 wt.% the effect of temperature on viscosity is slight. Moreover, the deviation from Arrhenian behaviour towards greater “fragility” occurs with increasing water content. We combined low- and high-temperature viscosities (also from literature) and parameterized themby the use of a modified Vogel–Fulcher–Tamman equation, which accommodates the non-Arrhenian temperature dependence ofmelt viscosity.Moreover, in order to explore the extent to which the improved knowledge of Agnano Monte Spina trachyte viscosity may affect simulation of volcanic eruption at Phlegrean Fields, we included our viscosity models in numerical simulations of magma flow and fragmentation along volcanic conduits. These simulations show that the new parameterizations (and hence the new equations) give stronger predictions in the temperature interval relevant for magmatic and eruptive processes.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/235 (2006)en
dc.subjectViscosityen
dc.subjectTrachyteen
dc.subjectFalling sphere methoden
dc.subjectVogel–Fulcher–Tamman equationen
dc.titleThe effect of H2O on the viscosity of K-trachytic melts at magmatic temperaturesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber124-137en
dc.identifier.URLhttp://www.elsevier.com/locate/chemgeoen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.chemgeo.2006.06.007en
dc.relation.referencesBaker, D.R, Freda, C., Brooker, R.A., Scarlato, P., 2005. Volatile diffusion in silicate melts and its effect on melt inclusions. Ann. Geophys. 48, 699–717. Behrens, H., 1995. Determination of water solubilities in high-viscosity melts: an experimental study on NaAlSi3O8 and KAlSi3O8 melts. Eur. J. Mineral. 7, 905–920. Behrens, H., Schulze, F., 2003. Pressure dependence of melt viscosity in the system NaAlSi3O8–CaMgSi2O6. Am. Mineral. 88, 1351–1363. Bourgue, E., Richet, P., 2001. The effects of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study. Earth Planet. Sci. Lett. 193, 57–68. Brearley, M., Montana, A., 1989. The effect of CO2 on the viscosity of silicate liquids at high pressure. Geochim. Cosmochim. Acta 53, 2609–2616. Brearley, M., Dickinson Jr., J.E., Scarfe, C.M., 1986. Pressure dependence ofmelt viscosities on the join diopside–albite. Geochim. Cosmochim. Acta 50, 2563–2570. Civetta, L., Carluccio, E., Innocenti, F., Sbrana, A., Taddeucci, G., 1991. Magma chamber evolution under Phlegrean Fields during the last 10 ka: trace element and isotope data. Eur. J. Mineral. 3, 415–428. deVita, S., Orsi,G., Civetta, L., Carandente, A.,D'Antonio, M.,Deino, A., di Cesare, T., Di Vito,M.A., Fisher, R.V., Isaia, R.,Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M., Southon, J., 1999. The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 269–301. Di Matteo, V., Carroll, M.R., Behrens, H., Vetere, F., Brooker, R.A., 2004.Water solubility in trachyticmelts. Chem. Geol. 213, 187–196. DiVito,M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 221–246. Dingwell, D.B., 1987. Melt viscosities in the system NaAlSi3O8–H2O– F2O−1. In: Mysen, B.O. (Ed.), Magmatic Processes: Physicochemical Principles. Geochemical Society, University Park, Pennsylvania, pp. 423–443. Dingwell, D.B., Virgo, D., 1988. Melt viscosities in the Na2O–FeO– Fe2O3–SiO2 system and factors controlling the relative viscosities of fully polymerized silicate melts. Geochim. Cosmochim. Acta 52, 395–403. Dingwell, D.B., Bagdassarov, N.S., Bussod, G.Y., Webb, S.L., 1993. Magma rheology. In: Luth, R.H. (Ed.), Short Course Handbook on Experiments at High Pressure and Applications to Earth's Mantle, vol. 21. Dingwell, D.B., Romano, C., Hess, K.U., 1996. The effect of water on the viscosity of a haplogranitic melt under P–T–X conditions relevant to silicic volcanism. Contrib. Mineral. Petrol. 124, 19–28. Dingwell, D.B., Hess, K.U., Romano, C., 1998. Viscosity data for hydrous peraluminous granitic melts: comparison with a metaluminous model. Am. Mineral. 83, 236–239. Freda, C., Baker, D.B., Ottolini, L., 2001. Reduction of water loss from gold palladium capsules during piston cylinder experiments by use of pyrophyllite powder. Am. Mineral. 86, 234–237. Freda, C., Baker, D.R., Romano, C., Scarlato, P., 2003.Water diffusion in natural potassic melts. In: Oppenheimer, C., Pyle, D.M., Barclay, J. (Eds.), Volcanic Degassing. Geol. Soc. Special Publications, vol. 213, pp. 53–62. Frenkel, Y.I., 1959. The Kinetic Theory of Liquids, Selected Works. Vol 3, Izd. Akad. Nauk SSSR, Moscow-Leningrad. (in Russian). Fulcher, G.S., 1925. Analysis of recent measurements of the viscosity of glasses. Am. Ceram. Soc. J. 8, 339–355. Giordano, D., Dingwell, D.B., 2003. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349. Giordano, D., Dingwell, D.B., Romano, C., 2000. Viscosity of a Teide phonolite in the welding interval. J. Volcanol. Geotherm. Res. 103, 239–245. Giordano, D., Romano, C., Papale, P., Dingwell, D.B., 2004. The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem. Geol. 213, 49–61. Glasstone, S., Laidler, K., Eyring, H., 1941. Theory of Rate Processes. McGraw-Hill, New York. Hess, K.U., Dingwell, D.B., 1996. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300. Holtz, F., Behrens, H., Dingwell, D.B., Taylor, R.P., 1992. Water solubility in aluminosilicate melts of haplogranitic compositions at 2 kbar. Chem. Geol. 96, 289–302. Holtz, F., Roux, J., Ohlhorst, S., Behrens, H., Schulze, F., 1999. The effects of silica on the viscosity of hydrous quartzofeldspathic melts. Am. Mineral. 84, 27–36. Kanzaki,M., Kurita, K., Fujii, T., Kato, T., Shimomura, O., Akimoto, S., 1987. A new technique to measure the viscosity and density of silicate melts at high pressure. In: Mahghnani, M.H., Shono, Y. (Eds.), High Pressure Research in Mineral Physics. Terrapub, AGU, pp. 195–200. Khitarov, N.I., Lebedev, Y.B., Slutsky, A.M., Dorfman, A.M., Soldatov, I.A., Revin, N.I., 1976. The pressure dependence of the viscosity of basalts melts. Geochem. Int. 13, 126–133. Kushiro, I., 1976. Changes in viscosity and structure of melt of NaAlSi2O6 composition at high pressure. Geochim. Cosmochim. Acta 52, 283–293. Kushiro, I., Yoder, H.S., Mysen, B.O., 1976. Viscosities of basalt and andesite melts at high pressure. J. Geophys. Res. 81, 6351–6356. Liebske, C., Behrens, H., Holtz, F., Lange, R.A., 2003. The influence of pressure and composition on the viscosity of andesitic melts. Geochim. Cosmochim. Acta 67, 473–485. Myueller, R.L., 1955. A valence theory of viscosity and fluidity for high-melting glass-forming materials in the critical temperature range. Zh. Prikl. Khim. 28, 1077–1087. Neri, A., Papale, P., Macedonio, G., 1998. The role of magma composition and water content in explosive eruptions. II. Pyroclastic dispersion dynamics. J. Volcanol. Geotherm. Res. 87, 95–115. Papale, P., 1999. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428. Papale, P., 2001. Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. J. Geophys. Res. 106, 11043–11065. Papale, P., Neri, A., Macedonio, G., 1998. The role of magma composition and water contents in explosive eruptions. I. Conduit ascent dynamics. J. Volcanol. Geotherm. Res. 87, 75–93. Papale, P., Moretti, R., Barbato, D., 2006. The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chem. Geology. 229, 78–95. Persikov, E.S., 1991. The viscosity of magmatic liquids: experiment, generalized patterns. A model for calculation and prediction. Applications. Adv. Phys. Geochem. 9, 1–40. Persikov,E.S., Zharikov,V.A., Bukhtiyarov, P.G., 1990.The effect of volatiles on the properties of magmatic melts. Eur. J. Mineral. 2, 621–642. Pinkerton, H., Stevenson, R.J., 1992. Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J. Volcanol. Geotherm. Res. 53, 47–66. Polacci,M., Papale, P., Del Seppia, D., Giordano, D., Romano, C., 2004. Dynamics of magma ascent and fragmentation in trachytic versus rhyolitic eruptions. J. Volcanol. Geotherm. Res. 131, 93–108. Richet, P., Lejeune, A.M., Holtz, F., Roux, J., 1996. Water and the viscosity of andesite melts. Chem. Geol. 128, 185–197. Romano, C., Hess, K.U., Mincione, V., Poe, B.T., Dingwell, D.B., 2001. The viscosities of the dry and hydrous XAlSi3O8 (X=Li, Na, K, Ca0.5, Mg0.5) melts. Chem. Geol. 174, 115–132. Romano, C., Giordano, D., Papale, P., Mincione, V., Dingwell, D.B., Rosi, M., 2003. The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Fields. Chem. Geol. 202, 23–38. Russell, J.K., Giordano, D., Dingwell, D.B., 2003. High-temperature limits on viscosity of non-Arrhenian silicate melts. Am. Mineral. 88, 1390–1394. Scaillet, B., Holtz, F., Pichavant, M., Schmidt, M., 1996. Viscosity of Himalayan leucogranites: implications for mechanism of granitic magma ascent. J. Geophys. Res. 101, 27691–27699. Scarfe, C.M., Mysen, B.O., Virgo, D., 1987. Pressure dependence of the viscosity of silicate melts. In: Mysen, B.O. (Ed.), Magmatic Processes: Physicochemical Principles. Geochemical Society, University Park, Pennsylvania, pp. 59–67. Schulze, F., Behrens, H., Holtz, F., Roux, J., Johannes, W., 1996. The influence of water on the viscosity of a haplogranitic melt. Am. Mineral. 81, 1155–1165. Shelby, J.E., McVay, G.L., 1976. Influence of water on the viscosity and thermal expansion of sodium trisilicate glasses. J. Non-Cryst. Solids 20, 439–449. Sparks, R.S.J., 2003. Dynamics of magma degassing. In: Oppenheimer, C., Pyle, D.M., Barclay, J. (Eds.), Volcanic Degassing. Geol. Soc. Special Publications, vol. 213, pp. 5–22. Suzuki, A., Ohtani, E., Funakoshi, K., Terasaki, H., Kubo, T., 2002. Viscosity of albite melt at high pressure and high temperature. Phys. Chem. Miner. 29, 159–165. Tammann, G., Hesse,W., 1926. Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257. Terasaki, H., Takumi, K., Satoru, U., Funakoshi, K., Suzuki, A., Okada, T., Maeda, M., Sato, J., Kubo, T., Kasai, S., 2001. The effect of temperature, pressure, and sulphur content on viscosity of the Fe–FeS melt. Earth Planet. Sci. Lett. 190, 93–101. Todesco, M., Neri, A., Esposti Ongaro, T., Papale, P., Macedonio, G., Santacroce, R., Longo, A., 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling. I. Large-scale dynamics. Bull. Volcanol. 64, 155–177. Vogel, D.H., 1921. Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z. 22, 645–646. Whittington, A.G., Richet, P., Behrens, H., Holtz, F., Scaillet, B., 2004. Experimental temperature–X(H2O)–viscosity relationship for leucogranites, and comparison with synthetic silicic liquids. Trans. R. Soc. Edinb. Earth Sci. 95, 59–72. Wilson, L., Sparks, R.S.J., Huang, T.C., Watkins, N.D., 1978. The control of volcanic column height by eruption energetics and dynamics. J. Geophys. Res. 83, 1829–1835. Zhang, Y., Xu, Z., Liu, Y., 2003. Viscosity of hydrous rhyolitic melts inferred from kinetic experiments, and a new viscosity model. Am. Mineral. 88, 1741–1752.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMisiti, V.en
dc.contributor.authorFreda, C.en
dc.contributor.authorTaddeucci, J.en
dc.contributor.authorRomano, C.en
dc.contributor.authorScarlato, P.en
dc.contributor.authorLongo, A.en
dc.contributor.authorPapale, P.en
dc.contributor.authorPoe, B.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Romeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità degli Studi di Roma Tre, Dipartimento di Scienze-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptuniversità chieti-
crisitem.author.orcid0000-0002-6151-7789-
crisitem.author.orcid0000-0002-2320-8096-
crisitem.author.orcid0000-0002-0516-3699-
crisitem.author.orcid0000-0003-1442-7729-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.orcid0000-0001-6590-6346-
crisitem.author.orcid0000-0002-5207-2124-
crisitem.author.orcid0000-0002-0816-0258-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
685.pdf648.76 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

17
checked on Feb 10, 2021

Page view(s) 50

306
checked on Apr 24, 2024

Download(s)

27
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric