Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2392
DC FieldValueLanguage
dc.contributor.authorallStanchits, S.; Department 3.2, Geo Forschungs Zentrum Potsdam, Telegrafenberg D420, 14473, Potsdam,en
dc.contributor.authorallVinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDresen, G.; Department 3.2, Geo Forschungs Zentrum Potsdam, Telegrafenberg D420, 14473, Potsdam,en
dc.date.accessioned2007-08-27T12:57:39Zen
dc.date.available2007-08-27T12:57:39Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2392en
dc.description.abstractAcoustic emissions (AE), compressional (P), shear (S) wave velocities, and volumetric strain of Etna basalt and Aue granite were measured simultaneously during triaxial compression tests. Deformation-induced AE activity and velocity changes were monitored using twelve P-wave sensors and eight orthogonally polarized S-wave piezoelectric sensors; volumetric strain was measured using two pairs of orthogonal strain gages glued directly to the rock surface. P-wave velocity in basalt is about 3 km/s at atmospheric pressure, but increases by > 50% when the hydrostatic pressure is increased to 120 MPa. In granite samples initialP-wave velocity is 5 km/s and increases with pressure by<20%. The pressure-induced changes of elastic wave speed indicate dominantly compliant low-aspect ratio pores in both materials, in addition Etna basalt also contains high-aspect ratio voids. In triaxial loading, stress-induced anisotropy of Pwave velocities was significantly higher for basalt than for granite, with vertical velocity components being faster than horizontal velocities. However, with increasing axial load, horizontal velocities show a small increase for basalt but a significant decrease for granite. Using first motion polarity we determinedAE source types generated during triaxial loading of the samples. With increasing differential stressAEactivity in granite and basalt increased with a significant contribution of tensile events. Close to failure the relative contribution of tensile events and horizontal wave velocities decreased significantly. A concomitant increase of doublecouple events indicating shear, suggests shear cracks linking previously formed tensile cracks.en
dc.language.isoEnglishen
dc.publisher.nameBirkhauseren
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries/163 (2006)en
dc.subjectAcoustic emissionen
dc.subjectultrasonic velocityen
dc.subjectfractureen
dc.subjectrocken
dc.titleUltrasonic velocities, acoustic emission characteristics and crack damage of basalt and graniteen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber974-993en
dc.identifier.URLhttp://www.birkhauser.chen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1007/s00024-006-0059-5en
dc.relation.referencesANDERSON, D.L., MINSTER, B. and COLE, D. (1974), The effect of oriented cracks on seismic velocities, J. Geophys. Res. 79, 4011–4015. AYLING, M.R., MEREDITH, P.G., and MURRELL, A.F. (1995), Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, I. Elastic-wave propagation measurements on dry rocks, Tectonophys. 245, 205–221. BENSON, P., SCHUBNEL, A., VINCIGUERRA, S., TROVATO, C., HAZZARD, J., MEREDITH, P.G., and YOUNG, R.P. (2006), Modelling the permeability evolution of micro-cracked rocks from elastic wave velocity inversion at elevated hydrostatic pressure, J. Geophys. Res. 111, BO4202, doi: 10.1029/2005JB03710. BONACCORSO, A., CAMPISI, O., FALZONE, G., PUGLISI, G., VELARDITA, R., and VILLARI, L. (1990), Ground deformation: Geodimeter trilateration and borehole tiltmetry. In (Barberi, F., Bertagnini, A., and Landi, P., eds.), Mt. Etna 1989 Eruption, Consiglio Nazionale delle Ricerche-Gruppo Nazionale per la Vulcanologia (Giardini, Pisa, Italy 1990) pp. 44–47. BONNER, B. P. (1974), Shear-wave birefringence in dilating granite, Geophys. Res. Lett. 1, 217–220. Vol. 163, 2006 Velocities, AE and Cracking of Basalt and Granite 991 BRIOLE, P., NUNNARI, G., PUGLISI, G., and MURRAY, J.B. (1990), The 1989 September-October eruption of Mt. Etna (Italy): some quantitative information obtained by geodesy and tiltmetry., C.R. Acad. Sci. Paris 310, II, 1747–1754. CASTELLANO, M., FERRUCCI, F., GODANO C., IMPOSA S. and MILANO G. (1993), Upwards migration of seismic focii: A forerunner of the 1989 eruption of Mt Etna (Italy), Bull. Volcanol., 55, 357–361. CHENG, C.H. and JOHNSTON, D. (1981), Dynamic and static moduli, Geophys. Res. Lett. 8, 39–42. DRESEN, G. and GUEGUEN, Y. (2004), Damage and rock physical properties. In Mechanics of fluid-saturated Rocks (eds. Y. GUEGUEN and M. Bouteca) pp. 169–217 (Elsevier Academic Press, Amsterdam 2004). FERRUCCI, F., RASA, R., GAUDIOSI, G., AZZARO, R., and IMPOSA, S. (1993), Mt. Etna: A model for the 1989 eruption, J. Volc. Geoth. Res. 56, 35–55. GUEGUEN, Y., and PALCIAUSKAS, V. (1994), Introduction to the Physics of Rocks., (Princeton University Press, Princeton, ISBN 0-691-03452-4). 294 pp. HADLEY, K. (1975), Dilatancy: Further Studies in Crystalline Rocks, Ph.D. Thesis, 202 pp. Massachusetts Institute of Technology, Cambridge. HADLEY, K. (1976), Comparison of calculated and observed crack densities and seismic velocities in Westerly granite, J. Geophys. Res. 81, 3484–3493. HOLCOMB, D. (1993), General theory of the Kaiser effect, J. Rock Mech. Min. Sci. and Geomech. Abstr. 30, 929–935. JANSSEN, C., WAGNER, C.F., ZANG, A., and DRESEN, G. (2001), Fracture Process Zone in Granite: A Microstructural Analysis, Int. J. Earth Sci. 90, 46–59. KING, M. S. (1969), Static and dynamic elastic moduli of rocks under pressure, Paper presented at Rock Mechanics-Theory and Practice, University of California, June 16–19. LEONARD, M. and KENNETT, B.L.N. (1999), Multi-component autoregressive techniques for the analysis of seismograms, Phys. Earth Planet. Int. 113(1–4), 247. LOCKNER, D.A., WALSH, J.B., and BYERLEE, J.D. (1977), Changes in seismic velocity and attenuation during deformation of granite, J.Geophys. Res. 82, 5374–5378. MAVKO, G., MUKERJI, T., and DVORKIN, J. (1998), The Rock Physics Handbook-Tools for Seismic Analysis in Porous Media, 329 pp. (Cambridge University Press, Cambridge 1998). NELDER, J. and MEAD, R. (1965). A Simplex method for function minimization, Computer J. 7, 308–312. NUR, A. (1971), Effects of stress on velocity anisotropy in rocks with cracks, J. Geophys. Res. 76, 2021–2034. O’CONNELL, R.J. and BUDIANSKY, B. (1974), Seismic velocities in dry and saturated cracked solids, J. Geophys. Res. 79, 5412–5426. PATERSON, M.S. and WONG, T.F. (2005), Experimental Rock Deformation–The Brittle Field, 347 pp. (Springer, Berlin). RECHES, Z. and LOCKNER, D. A. (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res. 99, 18,159–18,173. SCHUBNEL, A., NISHIZAWA, O., MASUDA, K., LEI, X., XUE, Z., and GUEGUEN, Y. (2003), Velocity Measurements and crack density determination during wet triaxial experiments on Oshima and Toki granites, Pure Appl. Geophys. 160, 869–887. SCHUBNEL, A., BENSON, P., THOMPSON, B.D., HAZZARD, J., and YOUNG, R.P. (2006), Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities, Pure Appl. Geophys., this issue. SIMMONS, G. and BRACE, W.F. (1965), Comparison of static and dynamic measurements of compressibility of rocks, J. Geophys. Res. 70, 5649–5656. SOGA, N., MIZUTANI, H., SPETZLER, H., and MARTIN, R. J. III. (1978), The effect of diltancy on velocity anisotropy in Westerly Granite, J. Geophys. Res. 83, 4451–4458. TAPPONNIER, P. and BRACE, W.F. (1976), Development of stress-induced microcracks in Westerly Granite, Int. J. Rock Mech. Min. Sci. and Geomech. 13, 103–112. VINCIGUERRA, S., TROVATO, C., MEREDITH, P.G. and BENSON, P.M. (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. Sci. 42/7-8, 900–910. WALSH, J.B. (1965a), The effect of cracks on the compressibility of rock, J. Geophys. Res. 70, 381–389. WALSH, J.B. (1965b), The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res. 70, 399–411. 992 S. Stanchits et al. Pure appl. geophys., WINKLER, K.W. andMURPHY III, W. F. Acoustic velocity and attenuation in porous rocks, In Rock Physics and Phase Relations, AGU Reference Shelf (ed. T. J. Ahrens) pp. 20–34 (AGU, Washington (1995) ZANG, A., WAGNER, F.C., STANCHITS, S., DRESEN, G., ANDRESEN, R. and HAIDEKKER, M.A. (1998), Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads, Geophys. J. Int. 135, 1113–1130. ZANG, A., WAGNER, F.C., STANCHITS, S., JANSSEN, C., and DRESEN, G. (2000), Fracture process zone in granite, J. Geophys. Res. 105, 23651–23661.en
dc.description.fulltextreserveden
dc.contributor.authorStanchits, S.en
dc.contributor.authorVinciguerra, S.en
dc.contributor.authorDresen, G.en
dc.contributor.departmentDepartment 3.2, Geo Forschungs Zentrum Potsdam, Telegrafenberg D420, 14473, Potsdam,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment 3.2, Geo Forschungs Zentrum Potsdam, Telegrafenberg D420, 14473, Potsdam,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGFZ, Potsdam, Germany-
crisitem.author.deptGFZ, Potsdam, Germany-
crisitem.author.orcid0000-0002-6939-3549-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
328.pdf955.3 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

156
checked on Feb 10, 2021

Page view(s) 50

214
checked on Apr 20, 2024

Download(s)

33
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric