Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2385
DC FieldValueLanguage
dc.contributor.authorallCorti, G.; CNR – Istituto di Geoscienze e Georisorseen
dc.contributor.authorallLucia, S.; Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze,en
dc.contributor.authorallBonini, M.; CNR – Istituto di Geoscienze e Georisorseen
dc.contributor.authorallSani, F.; Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze,en
dc.contributor.authorallMazzarini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.date.accessioned2007-08-27T09:16:40Zen
dc.date.available2007-08-27T09:16:40Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2385en
dc.description.abstractThe influence of pre-existing thrusts on the development of later normal faults was investigated using scaled laboratory analogue models. Experiments consisted of a phase of shortening followed by extension at variable angles of obliquity (a) to the shortening direction. Results suggest that the angle a has a major influence on the surface fault pattern and on the interaction between shortening-related structures and later extensional structures. Three different modes of interactions were identified depending upon the extension kinematics. (1) For orthogonal extension (a ¼ 08), shortening-related fold and thrust structures strongly influence the development of normal faults: graben structures nucleate within anticlines and the normal faults reactivate thrusts at depth (branching at depth mode of interaction). (2) For highly oblique extension (a 458), shortening-related structures exert no influence on normal faults as extension-related steeply-dipping faults (characterized by an oblique component of movement) displace early thrusts (no interaction mode). (3) For intermediate obliquity angles (a ¼ 158, 308), an intermediate mode of interaction characterizes the experiments, where the no interaction and branching at depth modes coexist in different regions of models. Modelling results can be used to infer regional extension directions as is shown for the Northern Appenines (Italy).en
dc.language.isoEnglishen
dc.publisher.nameGeological Society of Londonen
dc.relation.ispartofThe Geological Society of London, Special Pubblicationen
dc.relation.ispartofseries/253 (2006)en
dc.subjectfaultsen
dc.subjectInteractionen
dc.titleInteraction between normal faults and pre-existing thrust systems in analogue models. In: Buiter S.J.H. and Schreurs G. (eds.), Analogue and Numerical Modelling of crustal-Scale Processesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber65-78en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.relation.referencesBEMPORAD,S.,CONEDERA,C.,DAINELLI,P.,ERCOLI,A. & FACIBENI, P. 1986. Landsat imagery: a valuable tool for regional and structural geology. Memorie della Societa` Geologica Italiana, 31, 287–298. BERNINI, M. & LASAGNA, S. 1988. Rilevamento geologico e analisi strutturale del Bacino dell’Alta Val di Magra tra M. Orsaro e Pontremoli (Appennino Settentrionale). Atti della Societa` Toscana di Scienze Naturali, Serie A, 95, 139–183. BERNINI, M.,PAPANI, G.,DALL’ASTA, M., LASAGNA, S. &HEIDA, P. 1991. The Upper Magra Valley extensional basin: a cross section between Orsaro Mt. and Zeri (Massa province). Bollettino della Societa` Geologica Italiana, 110, 451–458. BOCCALETTI, M., COLI, M. & NAPOLEONE, G. 1977. Nuovi allineamenti strutturali da immagini landsat e rapporti con l’attivita` sismica negli Appennini. Bollettino della Societa` Geologica Italiana, 96, 679–694. BONINI, M. & SANI, F. 2002. Extension and compression in the Northern Appennines (Italy) hinterland: evidence from the Late Miocene-Pliocene Siena-Radicofani Basin and relations with basement structures. Tectonics, 21(3), 10.1029/ 2001TC900024. BONINI, M., SOURIOT, T., BOCCALETTI, M. & BRUN, J. P. 1997. Successive orthogonal and oblique extension episodes in a rift zone: laboratory experiments with application to the Ethiopian Rift. Tectonics, 16, 347–362. BONINI, M., TANINI, C., MORATTI, G., PICCARDI, L. & SANI, F. 2003. Geological and archaeological evidence of active faulting on the Martana Fault (Umbria-Marche Apennines, Italy) and its geodynamic implications. Journal of Quaternary Science, 18, 695–708. CLIFTON, A. E., SCHLISCHE, R. W., WITHJACK, M. O. & ACKERMANN, R. V. 2000. Influence of rift obliquity on fault-population systematics: results of experimental clay models. Journal of Structural Geology, 22, 1491–1509. CORTI, G., BONINI, M., INNOCENTI, F., MANETTI, P. & MULUGETA, G. 2001. Centrifuge models simulating magma emplacement during oblique rifting. Journal of Geodynamics, 31, 557–576. CORTI, G., BONINI, M., CONTICELLI, S., INNOCENTI, F., MANETTI, P. & SOKOUTIS, D. 2003. Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma. Earth-Science Reviews, 63, 169–247. DAUTEUIL, O. & BRUN, J. P. 1993. Oblique rifting in a low spreading ridge. Nature, 361, 145–148. DELLE DONNE, D., PICCARDI, L., SANI, F. & VANNUCCI, G. 2003. Active tectonics of the Mugello Basin (Northern Apennines, Italy). EGSAGU- EUG Joint Assembly, Nice, France, April 2003, Geophysical Research Abstracts, 5, 06229. FACCENNA, C., NALPAS, T., BRUN, J. P., DAVY, P. & BOSI, V. 1995. The influence of pre-existing faults on normal fault geometry in nature and in experiments. Journal of Structural Geology, 17, 1139–1149. FINETTI, I. R., BOCCALETTI, M., BONINI, M., DEL BEN, A., GELETTI, R., PIPAN, M. & SANI, F. 2001. Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines- Adriatic Sea. Tectonophysics, 343, 135–163. GARTRELL, A. P. 2001.Crustal rheology and its effect on rift basin styles. In: KOYI, H. A. &MANCKTELOW, N. S. (eds) Tectonic Modeling: A Volume in Honor of Hans Ramberg. Geological Society of America, Memoirs, 193, 221–233. HARRIS, L. B., HIGGINS, R., DENTITH, M. C. & MIDDLETON,M. 1994. Analogue modelling of transtensional faulting applied to the structure of the Perth Basin, Western Australia. In: PURCELL, P. G. & PURCELL R. R. (eds) The sedimentary basins of Western Australia. Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, 801–810. JIME´ NEZ-MUNT, I., SABADINI, R. & GARDI, A. 2003. Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. Journal of Geophysical Research, 108 (B1), 2006, DOI 10.1029/2001JB001544. KEEP, M. & MCKLAY, K. 1997. Analogue modelling of multiphase rift systems. Tectonophysics, 273, 239–270. KRANTZ, R. W. 1991. Normal fault geometry and fault reactivation in tectonic inversion experiments. In: YIELDING, A. M. & FREEMAN, B. (eds) The Geometry of Normal Faults. Geological Society, London, Special Publication, 56, 219–229. MARIUCCI, M. T. & MU¨ LLER, B. 2003. The tectonic regime in Italy inferred from borehole breakout data. Tectonophysics, 361, 21–35. MORLEY, C. K. 1999. How successful are analogue models in addressing the influence of pre-existing fabrics on rift structures? Journal of Structural Geology, 21, 1267–1274. PICCARDI, L., CORTI, G. & BOCCALETTI, M. 1999. Oblique extension in the Tyrrhenian side of the Northern Apennines (Italy). Proceedings of the XXIV European Geophysical Society General Assembly, The Hague, 19–23 April 1999, Geophysical Research Abstracts, 1, 82. PICCARDI, L., SANI, F., BONINI, M., BOCCALETTI, M., MORATTI, G. & GUALTIEROTTI, A. 1997. Deformazioni quaternarie nell’Appennino centrosettentrionale: evidenze ed implicazioni. Il Quaternario, 10, 273–280. RAMBERG, H. 1981. Gravity, deformation and the Earth’s crust. Academic Press, London. SIBSON, R. H. 1985. A note on fault reactivation. Journal of Structural Geology, 7, 751–754. TRON, V.&BRUN, J.-P. 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics, 188, 71–84. WEIJERMARS, R. & SCHMELING, H. 1986. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Physics of the Earth and Planetaty Interiors, 43, 316–330. WITHJACK, M. O. & JAMISON, W. R. 1986. Deformation produced by oblique rifting. Tectonophysics, 126, 99–124.en
dc.description.fulltextreserveden
dc.contributor.authorCorti, G.en
dc.contributor.authorLucia, S.en
dc.contributor.authorBonini, M.en
dc.contributor.authorSani, F.en
dc.contributor.authorMazzarini, F.en
dc.contributor.departmentCNR – Istituto di Geoscienze e Georisorseen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` degli Studi di Firenze,en
dc.contributor.departmentCNR – Istituto di Geoscienze e Georisorseen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` degli Studi di Firenze,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto di Geoscienze e Georisorse, CNR, Firenze, Italy-
crisitem.author.deptDipartimento di Scienze della Terra, Universita` degli Studi di Firenze,-
crisitem.author.deptCNR-IGG, Firenze-
crisitem.author.deptUniversità di Firenze-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0001-7399-4438-
crisitem.author.orcid0000-0003-4818-8076-
crisitem.author.orcid0000-0001-8832-1471-
crisitem.author.orcid0000-0002-3864-6558-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
929.pdf1.42 MBAdobe PDF
Show simple item record

Page view(s)

158
checked on Apr 17, 2024

Download(s)

37
checked on Apr 17, 2024

Google ScholarTM

Check