Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2364
DC FieldValueLanguage
dc.contributor.authorallMazzarini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallPareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallFavalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallIsola, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallTarquini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2007-08-24T09:13:59Zen
dc.date.available2007-08-24T09:13:59Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2364en
dc.description.abstractAn application of LiDAR (Light Detection and Ranging) intensity for the identification and mapping of different lava flows from the Mt. Etna (Italy) active volcano is described. In September 2004 an airborne LiDAR survey was flown over summit sectors of Mt. Etna. The information derived from LiDAR intensity values was used to compare the lava flows with respect to their age of emplacement. Analysed lava flows vary in age between those dating prior to AD 1610 and those active during the survey (2004-2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the LiDAR footprint scale, are the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: i) initially, from the time of emplacement, the LiDAR intensity of lava flow surfaces decreases; ii) about 6 years after emplacement the LiDAR intensity of lava surfaces starts to increase with the age of flows. LiDAR capability in terms of geometric (accuracy of ~ 1 m in plan position and less than 1 m in elevation) and spectral (LiDAR intensity depends on surface reflection at λ= 1.064 μm) information can thus be effectively used to map lava flows and define a relative chronology of lava emplacement.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.subjectLava flowen
dc.subjectLiDARen
dc.titleLava flow identification and ageing by means of LiDAR intensity: the Mt. Etna caseen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.relation.referencesAcocella, V. and M. Neri (2003), What makes flank eruptions? The 2001 Mount Etna eruption and its possible triggering mechanisms, Bulletin of Volcanology, 65, 517-529, doi: 10.1007/s00445-003- 0280-3. Amelung, F., S. Jonsson, H. Zebker and P. Segall (2000), Widespread uplift and ‘trapdoor’faulting on Galápagos volcanoes observed with radar interferometry, Nature, 407, 993-996. Andronico, D., S. Branca, S. Calvari, M. Burton, T. Caltabiano, R.A. Corsaro, P. Del Carlo, G. Garfi, L. Lodato, L. Miraglia, F. Muré, M. Neri, E. Pecora, M. Pompilio, G. Salerno, and L. Spampinato (2005), A multi-disciplinary study of the 2002-03 Etna eruption: insights into a complex plumbing system, Bulletin of Volcanology, 67, 314-330. Baltsavias, E.P. (1999), Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry & Remote Sensing, 54, 199-214. Bamber, J.L., S. Ekholm and W.B. Krabill (2001), A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data, J. Geoph. Res., 106, 6733-6745. Behncke, B., and M. Neri (2003a), The July-August 2001 eruption of Mt. Etna (Sicily), Bulletin of Volcanology, 65, 461-476. Behncke, B. and M. Neri (2003b), Cicles and trends in the recent eruptive behaviour of Mount Etna (Italy), Can. J. Earth Sci., 40, 1405-1411. Branca, S. and P. Del Carlo (2004), Eruptions of Mt. Etna during the past 3200 years: A revised compilation integrating the historical and stratigraphic records, In: Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds.), Mt. Etna: Volcano Laboratory, Geophysical Monograph Series, 143, 1-27. Branca, S., M. Coltelli and G. Groppelli (2004), Geological evolution of Etna Volcano, In: Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds.), Mt. Etna: Volcano Laboratory, Geophysical Monograph Series, 143, 49-63. Briole, P., D. Massonnet and C. Delacourt (1997), Post eruptive deformation associated with the 1986-1987 and 1989 lava flows of Etna detected by radar interferometry, Geoph. Res. Lett., 24, 37- 40. Brugelmann, R. and R. de Lange (2001), Airborne laserscanning versus airborne InSAR – a quality comparison of DEM’s, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR, Stockholm, 2001. http://wwwgeomatics.kth.se/~fotogram/OEEPE/oeepe_laser_main.htm. Calvari, S., M. Neri, and H. Pinkerton (2002), Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields, J. Volcanol. Geotherm. Res., 119, 107-123. Campbell, B.A. and M.K. Shepard (1996), Lava flow surface roughness and depolarized radar scattering, J. Geoph. Res., 101, 18941-18951. Casacchia, R., F. Mazzarini, C. Spinetti, L. Colini, M. Neri, B. Behncke, M.F. Buongiorno, V. DeSantis, A. Grignetti and R. Salvatori (2006), Riflettanza di superfici vulcaniche: la campagna 2003 sul Monte Etna, Rivista Italiana di Telerilevamento, 36, in press. Chester, D.K., A.M. Duncan, J.E. Guest and C.R.J. Kilburn (1985), Mount Etna: The anatomy of a volcano, Chapmann and Hall, London, 1-404. Clark, R.N. (1999), Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in: Manual of Remote Sensing, Chapter 1, John Wiley and Sons, Inc A. Rencz, Editor New York 1999, also available at http://speclab.cr.usgs.gov. Corsaro, R.A. and M. Pompilio (2004), Dynamics of magmas at Mount Etna, In: Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds.), Mt. Etna: Volcano Laboratory, Geophysical Monograph Series, 143, 91-110. Favalli, M, M.T. Pareschi, A. Neri and I. Isola (2005), Forecasting lava flow paths by stochastic approach, Geoph. Res. Lett., 32, L03305, doi:10.1029/2004GL021718. Harding, D.J. and G.S. Berghoff (2000), Fault scarp detection beneath dense vegetation cover: Airborne lidar mapping of the Seattle fault zone, Bainbridge Island, Washington State, Proceedings of the American Society of Photogrammetry and Remote Sensing Annual Conference, Washington, D.C., May 2000, 1-11, distributed on CD-ROM, available at http://pugetsoundlidar.org. Haugerund, R.A. and D.J. Harding (2001), Some algorithms for virtual deforestation(VDF) of Lidar topographic survey data, Proceedings of ISPRS workshop in Annapolis, MD, October 2001, also available at http://pugetsoundlidar.org. Haugerund, R. A., D.J Harding and L. Mark (2004), Mount St. Helens, Washington- Eruption 2004 - LIDAR September 2003 to November 20, 2004, http://vulcan.wr.usgs.gov/Volcanoes/MSH/ Eruption04/LIDAR/. Kaasalainen, S., E. Ahokas, J. Hyyppa, J. Suomalainen (2005), Study of surface brightness from backscattered laser intensity: calibration of laser data, Geoscience and Remote Sensing Letters, IEEE, 2, 255-259. Kilburn, C.R.J. (2004), Fracturing as a quantitative indicator of lava flow dynamic, J. Volcanol. Geotherm. Res., 132, 209-224. Lichti, D.D. and B.R. Harvey (2002), The effects of reflecting surface material properties on timeof- flight laser scanner measurements, Symposium on Geospatial Theory, Proceedings and Applications, Ottawa. Lide, D.R. (1991) Handbook of Chemistry and Physics, CRC Press, 72nd Ed., Boca Raton, Fl, USA. Lu Z., T. Masterlark and D. Dzurisin (2005), Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation, J. Geoph. Res., 110, B02403, doi:10.1029/2004JB003148. Manual of Remote Sensing, Volume I, Theory, Instruments and Techniques, (1975), Janza F.J., Blue H.M. and Johnston J.E. (eds.), American Society of Photogrammetry, pp. 867. Haugerund, R. A., D.J Harding and L. Mark (2004), Mount St. Helens, Washington- Eruption 2004 - LIDAR September 2003 to November 20, 2004, http://vulcan.wr.usgs.gov/Volcanoes/MSH/ Eruption04/LIDAR/. Kaasalainen, S., E. Ahokas, J. Hyyppa, J. Suomalainen (2005), Study of surface brightness from backscattered laser intensity: calibration of laser data, Geoscience and Remote Sensing Letters, IEEE, 2, 255-259. Kilburn, C.R.J. (2004), Fracturing as a quantitative indicator of lava flow dynamic, J. Volcanol. Geotherm. Res., 132, 209-224. Lichti, D.D. and B.R. Harvey (2002), The effects of reflecting surface material properties on timeof- flight laser scanner measurements, Symposium on Geospatial Theory, Proceedings and Applications, Ottawa. Lide, D.R. (1991) Handbook of Chemistry and Physics, CRC Press, 72nd Ed., Boca Raton, Fl, USA. Lu Z., T. Masterlark and D. Dzurisin (2005), Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation, J. Geoph. Res., 110, B02403, doi:10.1029/2004JB003148. Manual of Remote Sensing, Volume I, Theory, Instruments and Techniques, (1975), Janza F.J., Blue H.M. and Johnston J.E. (eds.), American Society of Photogrammetry, pp. 867. Martin, G., A.J. Matthews, R. Clay and B. Dawson (1999), Time variation of the vertical profile of the atmosphere for air fluorescence measurements, Proceedings 26th ICRC, Salt lake, OG.4.5.06, 1999. Mazzarini, F., M.T. Pareschi, M. Favalli, I. Isola, S. Tarquini and E. Boschi (2005), Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data, Geoph. Res. Lett., 32, L04305, doi:10.1029/2004GL021815. Mazzarini, F., M.T. Pareschi, A. Sbrana, M. Favalli and P. Fulignati (2001), Surface hydrothermal alteration mapping at Vulcano island Using MIVIS data, International Journal of Remote Sensing, 22-11, 2045-2070. McKean, J. and J. Roering (2004), Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry, Geomorphology, 57, 331-351. Nilsson, M. (1996) Estimation of tree heights and stand volume using airborne Lidar system, Remote Sensing of Environment, 56, 1-7. Norheim, R.A., V.R. Queija, and R.A. Haugerud (2002), Comparison of LiDAR and INSAR DEMs with dense ground control, at http://gis.esri.com/library/userconf/ proc02/pap0442/p0442.htm. Poli Marchese, E. and G. Patti (2000) Carta della vegetazione dell’Etna a scala 1:50000, Ist. Biol. Ecol. Veg., Università di Catania, Selca, Firenze. Raymond, M.M., (1992), Laser Remote Sensing: Fundamentals and Applications, Krieger Publishing Company, 01, January, 1992. Ridgway, J.R., J.B. Minster, N. Williams, J.L. Bufton and W. B. Krabill (1997), Airborne laser altimeter survey of Long Valley, California, Geophysical Journal International, 131, 267-280. Ritchie, J.C. (1995), Airborne laser altimeter measurements of landscape topography, Remote Sensing of Environment, 53, 91-96. Rittmann, A. (1973), Structure and evolution of Mount Etna, Phil. Trans. R. Soc. London, 274, A, 5-16. Romano, R. (1982), Succession of the volcanic activity in the Etnean area, Mem. Soc. Geol. It., 23, 75-97. Romano, R. and J.E. Guest (1979), Volcanic geology of the summit and northern flank of Mount Etna, Sicily, Boll. Soc. Geol. It., 98, 189-215. Romano R and C. Sturiale (1982) The historical eruptions of Mt. Etna (Volcanological data), Memorie della Società Geologica Italiana, 23, 75-97. Romano R, C. Sturiale and F. Lentini (coordinators) (1979) Geological map of Mount Etna (scale 1:50,000). S.EL.CA. Firenze (made available in: Memorie della Società Geologica Italiana, 23, 1982). Schiewe, J. (2003), Integration of data from multi-sensor systems for landscape modelling tasks, The International Archives of photogrammetry, Remote Sensing and Spatial Information Sciences (CD-ROM), XXXIV-7/W9, Regensburg, Germany, 2003. Sgavetti, M., L. Pompilio and S. Meli (2006), Reflectance spectroscopy (0.3 – 2.5 μm) at varioaus scales for bulk-rock identification, Geosphere, 2, 142-160. Shepard, M.K., B.A. Campbell, M.H. Bulmer, T.G. Farr, L.R. Gaddis and J.J. Plaut (2001), The roughness of natural terrain: A planetary and remote sensing perspective, J. Geoph. Res., 106, 32777-32795. Smith, D.E., M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, P.J. McGovern, J.B.Abshire, R.S. Afzal, and X. Sun (2001), Mars Orbiter Laser Altimeter: Experiment Summary After the First Year of Global Mapping of Mars?, J. Geoph. Res., 106, 23689-23722. Soule, S.A, K.V. Cashman and J.P. Kauahikaua (2004), Examining flow emplacement through the surface morphology of three rapidly emplaced solidified lava flows, Kilauea Volcano, Hawaii, Bulletin of Volcanology, 66, 1-14. Stevens, N.F., G. Wadge, C.A. Williams, J.G. Morely, J.-P. Muller, J.B. Murray and M. Upton (2001) Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry, J. Geoph. Res., 106, 11293-11313. Taddeucci, J., M. Pompilio and P. Scarlato (2002), Monitoring the explosive activity of the July- August 2001 eruotion of Mt. Etna (Italy) by ash characterization, Geoph. Res. Lett., 29, doi:10.1029/2001GL014372. Tian, Q.J., P. Gong, B. Xu, X. Wang, H. Guo and Q. Tong (2002), Reflectance, dielectric constant and chemical content of selected sedimentary rocks, Int. J. Remote Sensing, 23, 5123-5128. van Ruitenbeek, F.J.A., P. Debba, F.D. van der Meer, T. Cudahy, M. van der Meijde and M. Hale (2006), Mapping white micas and their absorption wavelengths using hyperspectral band ratios, Remote Sensing of Environment, 102, 211–222. Wehr, A. and U. Lohr (1999), Airborne laser scanning – an introduction and overview. ISPRS Journal of Photogrammetry & Remote Sensing, 54, 68-82. Werner, C.L., A. Wiesmann, F. Siegert and S. Kuntz (2000), JERS INSAR DEM generation for Borneo, In: Proceeding of IGAARS’00, Honolulu, USA, 24-28 July, 2000. White, S.A. and Y. Wang (2003), Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline, Remote Sensing of Environment, 85, 39-47.en
dc.description.fulltextopenen
dc.contributor.authorMazzarini, F.en
dc.contributor.authorPareschi, M. T.en
dc.contributor.authorFavalli, M.en
dc.contributor.authorIsola, I.en
dc.contributor.authorTarquini, S.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-3864-6558-
crisitem.author.orcid0000-0002-7338-6069-
crisitem.author.orcid0000-0002-3911-4676-
crisitem.author.orcid0000-0002-8064-621X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
898.pdf1.6 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

321
checked on Apr 24, 2024

Download(s) 5

880
checked on Apr 24, 2024

Google ScholarTM

Check