Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2309
DC FieldValueLanguage
dc.contributor.authorallBizzarri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-07-20T15:40:37Zen
dc.date.available2007-07-20T15:40:37Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2309en
dc.description.abstractWe investigate the role of frictional heating and thermal pressurization on earthquake ruptures by modeling the spontaneous propagation of a three-dimensional (3-D) crack on a planar fault governed by assigned constitutive laws and allowing the evolution of effective normal stress. We use both slip-weakening and rate- and state-dependent constitutive laws; in this latter case we employ the Linker and Dieterich evolution law for the state variable, and we couple the temporal variations of friction coefficient with those of effective normal stress. In the companion paper we investigate the effects of thermal pressurization on the dynamic traction evolution. We solve the 1-D heat conduction equation coupled with Darcy’s law for fluid flow in porous media. We obtain a relation that couples pore fluid pressure to the temperature evolution on the fault plane. We analytically solve the thermal pressurization problem by considering an appropriate heat source for a fault of finite thickness. Our modeling results show that thermal pressurization reduces the temperature increase caused by frictional heating. However, the effect of the slipping zone thickness on temperature changes is stronger than that of thermal pressurization, at least for a constant porosity model. Pore pressure and effective normal stress evolution affect the dynamic propagation of the earthquake rupture producing a shorter breakdown time and larger breakdown stress drop and rupture velocity. The evolution of the state variable in the framework of rate- and state-dependent friction laws is very different when thermal pressurization is active. In this case the evolution of the friction coefficient differs substantially from that inferred from a slip-weakening law. This implies that the traction evolution and the dynamic parameters are strongly affected by thermal pressurization.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseriesB05303,111(2006)en
dc.subjectthermal pressurization modelen
dc.subjectdynamic ruptureen
dc.titleA thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional faul. 1. Methodological approachen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doidoi:10.1029/2005JB003862en
dc.relation.referencesAllen, A. R. (1979), Mechanism of frictional fusion in fault zones, J. Struct. Geol., 1, 231–243. Andrews, D. J. (1976a), Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575– 3582. Andrews, D. J. (1976b), Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 5679–5687. Andrews, D. J. (1999), Test of two methods for faulting in finite-difference calculations, Bull. Seismol. Soc. Am., 89, 931–937. Andrews, D. J. (2002), A fault constitutive relation accounting for thermal pressurization of pore fluid, J. Geophys. Res., 107(B12), 2363, doi:10.1029/2002JB001942. Andrews, D. J., and Y. Ben-Zion (1997), Wrinkle-like slip pulse on a fault between different materials, J. Geophys. Res., 102, 553– 571. Antonioli, A., M. E. Belardinelli, A. Bizzarri, and K. S. Vogfjord (2006), Evidence of instantaneous dynamic triggering during the seismic sequence of year 2000 in south Iceland, J. Geophys. Res., 111, B03302, doi:10.1029/2005JB003935. Archuleta, R. J., and S. M. Day (1980), Dynamic rupture in a layered medium: The 1996 Parkfield earthquake, Bull. Seismol. Soc. Am., 70, 671– 689. Batchelor, G. H. (1967), An Introduction to Fluid Dynamics, 615 pp., Cambridge Univ. Press, New York. Beeler, N. M., and T. E. Tullis (1997), The role of time and displacement in velocity-dependent volumetric strain of fault zones, J. Geophys. Res., 102, 22,595– 22,609. Beeler, N. M., T. E. Tullis, and J. D. Weeks (1994), The roles of time and displacement in the evolution effect in rock friction, Geophys. Res. Lett., 21, 1987–1990. Berry, F. A. F. (1973), High fluid potentials in the California Coast Range and their tectonic significance, Am. Assoc. Pet. Geol. Bull., 57, 1219–1249. Bizzarri, A., and M. Cocco (2003), Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi:10.1029/2002JB002198. Bizzarri, A., and M. Cocco (2005), 3-D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed, Ann. Geophys., 48, 277– 299. Bizzarri, A., and M. Cocco (2006), A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters, J. Geophys. Res., 111, B05304, doi:10.1029/2005JB003864. Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi (2001), Solving the dynamic rupture problem with different numerical approaches and constitutive laws, Geophys. J. Int., 144, 656– 678. Blanpied, M. L., D. A. Lockner, and J. D. Byerlee (1992), An earthquake mechanism based on rapid sealing of faults, Nature, 358, 574–576. Brodsky, E. E., and H. Kanamori (2001), Elastohydrodynamic lubrication of faults, J. Geophys. Res., 106, No. B8, 16,357– 16,374. Byerlee, J. (1990), Friction, overpressure and fault normal compression, Geophys. Res. Lett., 17, 2109– 2112. Cardwell, R. K., D. S. Chinn, G. F. Moore, and D. L. Turcotte (1978), Frictional heating on a fault zone with finite thickness, Geophys J. R. Astron. Soc., 52, 525–530. Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 510 pp., Oxford Univ. Press, New York. Chester, F. M. (1995), A rheologic model for wet crust applied to strike-slip faults, J. Geophys. Res., 100, 13,033– 13,044. Chester, F. M., and J. S. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199– 221. Chester, F. M., J. P. Evans, and R. L. Biegel (1993), Internal structure and weakening mechanism of the San Andreas Fault, J. Geophys. Res., 98, 771–786. Cocco, M., and A. Bizzarri (2002), On the slip-weakening behavior of rateand state dependent constitutive laws, Geophys. Res. Lett., 29(11), 1516, doi:10.1029/2001GL013999. Collettini, C., L. Chiaraluce, F. Pucci, M. R. Barchi, and M. Cocco (2005), Looking at fault reactivation matching structural geology and seismological data, J. Struct. Geol., 27, 937– 942, doi:10.1016/j.jsg.2004.10.016. Darcy, H. (1856), Les Fontaines Publiques de la Ville de Dijon, 590 pp., Dalmont, Paris. Das, S., and K. Aki (1977a), A numerical study of two-dimensional spontaneous rupture propagation, Geophys. J. R. Astron. Soc., 50, 643– 668. Das, S., and K. Aki (1977b), Fault plane with barriers: A versatile earthquake model, J. Geophys. Res., 82, 5658–5670. Am., 72, 1881–1902. Delaney, P. T. (1982), Rapid intrusion of magma into wet rocks: Groundwater flow due to pore pressure increases, J. Geophys. Res., 87, 7739– 7756. Dieterich, J. H. (1978), Time-dependent friction and the mechanics of stick slip, Pure Appl. Geophys., 116, 790– 806. Dieterich, J. H. (1986), A model for the nucleation of earthquake slip, in Earthquake Source Mechanics, Geophys. Monogr. Ser., vol. 37, edited by S. Das, J. Boatwright, and H. Scholz, pp. 37–47, AGU,Washington, D. C. Dieterich, J.H. (1994),Aconstitutive lawfor rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601–2618. Dieterich, J. H., and M. F. Linker (1992), Fault instability under conditions of variable normal stress, Geophys. Res. Lett., 19, 1691– 1694. Di Toro, G., and G. Pennacchioni (2004), Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalities (Italian southern Alps), J. Struct. Geol., 26, 1783–1801. Di Toro, G., D. L. Golbsby, and T. E. Tullis (2004), Friction falls toward zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436– 439. Di Toro, G., G. Pennacchioni, and G. Teza (2005), Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults, Tectonophysics, 402, 3– 20. Fialko, Y. (2004), Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth, J. Geophys. Res., 109, B01303, doi:10.1029/2003JB002497. Fialko, Y. A., and A. M. Rubin (1998), Thermodynamics of lateral dike propagation: Implications for crustal accretion at slow spreading midocean ridges, J. Geophys. Res., 103, 2501–2514. Friedman, M., J. M. Logan, and J. A. Rigert (1974), Glass-indurated quartz gouge in sliding-friction experiments on sandstone, Geol. Soc. Am. Bull., 85, 937– 942. Harris, R. A., and S. M. Day (1997), Effects of a low –velocity zone on a dynamic rupture, Bull. Seismol. Soc. Am., 87, 1267– 1280. Hobbs, B. E., and B. H. G. Brady (1985), Normal stress changes and the constitutive law for rock friction (abstract), Eos. Trans. AGU, 66, 382. Hubbert, M. K., and W. W. Rubey (1959), Mechanics of fluid-filled porous solids and its application to overthrust faulting, Geol. Soc. Am. Bull., 70, 115–166. Ida, Y. (1972), Cohesive force across the tip of a longitudinal – shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77, 3796– 3805. Irwin, W. P., and I. Barnes (1975), Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas fault system in central and northern California, Geology, 3, 713– 716. Ito, H., H. Naka, D. Lockner, T. Kiguchi, H. Tanaka, R. Ikeda, T. Ohtani, K. Fujimoto, and Y. Kuwahara (1998), Permeability of the Nojima fault: Comparison of borehole results with core measurements, paper presented at 1998 Fall Meeting, Seismol. Soc. of Jpn., Tokyo. Jeffreys, H. (1942), On the mechanics of faulting, Geol. Mag., 79, 291– 295. Kanamori, H., and E. E. Brodsky (2001), The physics of earthquakes, Phys. Today, 54, 34– 39. Kanamori, H., and T. H. Heaton (2000), Microscopic and macroscopic physics of earthquakes, GeoComplexity and the Physics of Earthquakes, Geophys. Monogr. Ser., vol. 120, edited by J. B. Rundle, D. L. Turcotte, and W. Klein, pp. 147– 163, AGU, Washington, D. C. Lachenbruch, A. H. (1980), Frictional heating, fluid pressure, and the resistance to fault motion, J. Geophys. Res., 85, 6097– 6122. Lee, T.-C., and P. Delaney (1987), Frictional heating and pore pressure rise due to fault slip, Geophys. J. R. Astron. Soc., 88, 569– 591. Li, Y. G., J. Vidale, K. Aki, C. Marone, and W. K. Lee (1994), Fine structure of the Landers fault zone: Segmentation and the rupture process, Science, 265, 367– 380. Linker, M. F., and J. H. Dieterich (1992), Effects of variable normal stress on rock friction: Observations and constitutive equations, J. Geophys. Res., 97, 4923– 4940. Lockner, D., and J. Byerlee (1995), An earthquake instability model based on fault containing high fluid-pressure compartments, Pure Appl. Geophys., 145, 717–745. Lockner, D., R. Summers, and J. Byerlee (1986), Effects of temperature and sliding rate of frictional strength of granite, Pure Appl. Geophys., 124, 445– 469. Lockner, D., H. Naka, H. Tanaka, H. Ito, and R. Ikeda (2000), Permeability and strength of the Nojima core samples from the Nojima fault of the 1995 Kobe earthquake, in Proceedings of the International Workshop on 21 of 22 the Nojima Fault Core and Borehole Data Analysis Nov 22– 23, 1999, edited by H. Ito et al., U.S. Geol. Surv. Open File Rep., 00-129, 147–152. Madariaga, R., and K. B. Olsen (2000), Criticality of rupture in 3-D, Pure Appl. Geophys., 157, 1981– 2001. Mair, K., and C. Marone (2000), Shear heating in granular layers, Pure Appl. Geophys., 157, 1847– 1866. Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643–696. Mase, C. W., and L. Smith (1985), Pore-fluid pressures and frictional heating on a fault surface, Pure Appl. Geophys., 92, 6249–6272. Mase, C. W., and L. Smith (1987), Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault, J. Geophys. Res., 92, 6249–6272. McKenzie, D., and J. N. Brune (1972), Melting on fault planes during large earthquakes, Geophys. J. R. Astron. Soc., 29, 65–78. Melosh, H. J. (1979), Acoustic fluidization: A new geologic process?, Geophys. Res., 84, 7513– 7520. Melosh, H. J. (1996), Dynamic weakening of faults by acoustic fluidization, Nature, 397, 601– 606. Miller, S. A. (2002), Properties of large ruptures and the dynamical influence of fluids on earthquakes and faulting, J. Geophys. Res., 107(B9), 2182, doi:10.1029/2000JB000032. Miller, S. A., A. Nur, and D. L. Olgaard (1996), Earthquakes as a coupled shear stress– high pore pressure dynamical system, Geophys. Res. Lett., 23, 197–200. Miller, S. A., C. Collettini, L. Chiaraluce, M. Cocco, M. R. Barchi, and B. J. P. Kaus (2004), Aftershocks driver by high-pressure CO2 source at depth, Nature, 427, 724–727. Mizoguchi, K., T. Hirose, and T. Shimamoto (2000), Permeability structure of Nojima fault: Analysis of Funaki outcrop in Hohundan, Tsuna-gun, Hyogo Prefecture (in Japanese), Earth Mon. Extra, 31, 58– 65. Morrow, C. A., L. Q. Shi, and J. D. Byerlee (1984), Permeability of fault gouge under confining pressure and shear stress, J. Geophys. Res., 89, 3193–3200. Morse, P., and H. Feshbach (1953), Methods of Theoretical Physics, 997 pp., McGraw-Hill, New York. Nur, A., and J. Booker (1972), Aftershocks caused by pore fluid flow?, Sciece, 175, 885– 887. Ohnaka, M. (2003), A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108(B2), 2080, doi:10.1029/2000JB000123. Okubo, P. G. (1989), Dynamic rupture modeling with laboratory– derived constitutive relations, J. Geophys. Res., 94, 12,321– 12,335. Olsson, W. A. (1988), The effect of normal stress history on rock friction, in Key Questions in Rock Mechanics: Proceedings of the 29th U. S. Symposium, edited by P. A. Cundall, R. L. Sterling, and A. M. Starfield, pp. 111 –117, A. A. Balkema, Brookfield, Vt. Otsuki, K., N. Monzawa, and T. Nagase (2003), Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms, J. Geophys. Res., 108(B4), 2192, doi:10.1029/2001JB001711. Perfettini, H., R. S. Stein, R. Simpson, and M. Cocco (1999), Stress transfer by the 1988–1989 M = 5.3 and 5.4 Lake Elsman foreshocks to the Loma Prieta fault: Unclamping at the site of peak mainshock slip, J. Geophys. Res., 104, 20,169– 20,182. Perfettini, H., J. Schmittbuhl, and A. Cochard (2003), Shear and normal load perturbations on a two-dimensional continuous fault: 2. Dynamic triggering, J. Geophys. Res., 108(B9), 2409, doi:10.1029/2002JB001805. Prakash, V. (1998), Frictional response of sliding interfaces subjected to time varying normal pressure, J. Tribol., 120, 97– 102. Raleigh, C. B., and J. Everden (1981), Case for low deviatoric stress in the lithosphere, in The Mechanical Behavior of Crustal Rocks, Geophys. Monogr. Ser., vol. 24, edited by N. L. Carter et al., pp. 173 – 186, AGU, Washington, D. C. Rice, J. R. (1992), Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault, in Fault Mechanics and Transport Properties in Rocks (the Brace Volume), edited by B. Evans and T.-F. Wong, pp. 475– 503, Elsevier, New York. Rice, J. R. (1993), Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885– 9907. Rice, J. R. (1999), Flash heating at asperity contacts and rate-dependent friction, Eos Trans. AGU, 81(46), Fall Meet. Suppl., Abstract T12B-08. Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res., doi:10.1029/2005JB004006, in press. Richardson, E., and C. Marone (1999), Effects of normal stress vibrations on frictional healing, J. Geophys. Res., 104, 28,859– 28,878. Roy, M., and C. Marone (1996), Earthquake nucleation on model faults with rate- and state-dependent friction: Effects of inertia, J. Geophys. Res., 101, 13,919– 13,932. Rudnicki, J.W., and C.-H. Chen (1988), Stabilization of rapid frictional slip on a weakening fault by dilatant hardening, J. Geophys. Res., 93, 4745–4757. Ruina, A. L. (1980), Friction laws and instabilities: A quasistatic analysis of some dry frictional behavior, Ph.D. thesis, Brown Univ., Providence, R. I. Ruina, A. L. (1983), Slip instability and state variable friction laws, J. Geophys. Res., 88, 10,359– 10,370. Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., 471 pp., Cambridge Univ. Press, New York. Segall, P., and J. R. Rice (1995), Dilatancy, compaction, and slip instability of a fluid-infiltrated fault, J. Geophys. Res., 100, 22,155–22,171. Shapiro, S. A., R. Patzig, E. Rothert, and J. Rindshwentner (2003), Triggering of seismicity by pore-pressure perturbations: Permeability-related signature of the phenomenon, Pure Appl. Geophys., 160, 1051– 1066. Sibson, R. H. (1973), Interaction between temperature and pore-fluid pressure during earthquake faulting—A mechanism for partial or total stress relief, Nature, 243, 66–68. Sibson, R. H. (1977), Kinetic shear resistance, fluid pressures and radiation efficiency during seismic faulting, Pure Appl. Geophys., 115, 387– 400. Sibson, R. H. (1986), Brecciation processes in fault zones: Inferences from earthquake rupturing, Pure Appl. Geophys., 124, 169–175. Sibson, R. H. (2003), Thickness of the seismic slip zone, Bull. Seismol. Soc. Am., 93, 1169– 1178. Sleep, N. H. (1995a), Frictional heating and the stability of rate and state dependent frictional sliding, Geophys. Res. Lett., 22, 2785–2788. Sleep, N. H. (1995b), Ductile creep, compaction, and rate and state dependent friction within major fault zones, J. Geopys. Res., 100, 13,065–13,080. Sleep, N. H. (1997), Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization, J. Geophys. Res., 102, 2875– 2895. Sleep, N. H. (1999), Rate- and state-dependent friction of intact rock and gouge, J. Geophys. Res., 104, 17,847–17,855. Sleep, N. H., and M. L. Blanpied (1992), Creep, compaction and the weak rheology of major faults, Nature, 359, 687–692. Sleep, N. H., E. Richardson, and C. Marone (2000), Physics of friction and strain rate localization in synthetic gouge, J. Geophys. Res., 105, 25,875– 25,890. Sommerfeld,A. (1950),Mechanics ofDeformable Bodies, Elsevier,NewYork. Spikes, H. (1997),Mixed lubrication—An overview, Lubric. Sci., 9, 221–253. Spray, J. G. (1993), Viscosity determinations of some frictionally generated silicate melts: Implications for fault zone rheology at high strain rates, J. Geophys. Res., 98, 8053–8068. Stefan, J. (1891), Uber die theorie der eisbildung, insbesondere die eisbildung im polarmene, Ann. Phys. Chem., 42, 269– 286. Terzaghi, K., R. B. Peck, and G. Mesri (1996), Soil Mechanics in Engineering Practice, 3rd ed., John Wiley, Hoboken, N. J. Teufel, L. W., and J. M. Logan (1979), Effect of displacement rate on the real area of contact and temperatures generated during frictional sliding of Tennessee sandstone, Pure Appl. Geophys., 116, 840– 865. Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco (2004), Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett., 31, L02611, doi:10.1029/2003GL018811. Tinti, E., P. Spudich, and M. Cocco (2005), Earthquake fracture energy inferred from kinematic rupture models on extended faults, J. Geophys. Res., 110, B12303, doi:10.1029/2005JB003644. Tsutsumi, A., and T. Shimamoto (1997), High velocity frictional properties of gabbro, Geophys. Res. Lett., 24, 699– 702. Turcotte, D. L., and G. Schubert (2002), Geodynamics, 2nd ed., 456 pp., Cambridge Univ. Press, New York. Wang, H. F. (2000), Theory of Linear Poroelasticity, 287 pp., Princeton Univ. Press, Princeton, N. J. Wang, W., and C. H. Scholz (1983), Micromechanics of the velocity and normal stress dependence of rock friction, Pure Appl. Geophys., 143, 303– 315. Wibberley, C. A. J., and T. Shimamoto (2003), Internal structure and permeability of major strike-slip fault zones: The Median Tectonic Line in mid prefecture, southwest Japan, J. Struct. Geol., 25, 59–78. Yamashita, T. (1998), Simulation of seismicity due to fluid migration in a fault zone, Geophys. J. Int., 132, 661– 675.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBizzarri, A.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-8313-4124-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
732.PDF4.84 MBAdobe PDFView/Open
Show simple item record

Page view(s)

107
checked on Apr 20, 2024

Download(s) 20

430
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric