Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2308
DC FieldValueLanguage
dc.contributor.authorallBenson, P.; Mineral, Ice and Rock Physics Laboratory, University College London, London, UK.en
dc.contributor.authorallSchubnel, A.; Lassonde Institute, University of Toronto, Toronto, Ontario, Canada.en
dc.contributor.authorallVinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTrovato, C.; Dipartimento di Fisica e Astronomia, Universita`di Catania, Catania, Italyen
dc.contributor.authorallMeredith, P. G.; Mineral, Ice and Rock Physics Laboratory, University College London, London, UK.en
dc.contributor.authorallYoung, P. R.; Lassonde Institute, University of Toronto, Toronto, Ontario, Canada.en
dc.date.accessioned2007-07-19T08:17:49Zen
dc.date.available2007-07-19T08:17:49Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2308en
dc.description.abstractA key consequence of the presence of microcracks within rock is their significant influence upon elastic anisotropy and transport properties. Here two rock types (a basalt and a granite) with contrasting microstructures, dominated by microcracks, have been investigated using an advanced experimental arrangement capable of measuring porosity, P wave velocity, S wave velocity, and permeability contemporaneously at effective pressures up to 100 MPa. Using the Kachanov (1994) noninteractive effective medium theory, the measured elastic wave velocities are inverted using a least squares fit, permitting the recovery of the evolution of crack density and aspect ratio with increasing isostatic pressure. Overall, the agreement between measured and predicted velocities is good, with average error less than 0.05 km/s. At larger scales and above the percolation threshold, macroscopic fluid flow also depends on the crack density and aspect ratio. Using the permeability model of Gue´guen and Dienes (1989) and the crack density and aspect ratio recovered from the elastic wave velocity inversion, we successfully predict the evolution of permeability with pressure for direct comparison with the laboratory measurements. We also calculate the evolution of the crack porosity with increasing isostatic pressure, on the basis of the calculated crack density, and compare this directly with the experimentally measured porosity. These combined experimental and modeling results illustrate the importance of understanding the details of how rock microstructures change in response to an external stimulus when predicting the simultaneous evolution of rock physical properties.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/111 (2006)en
dc.subjectmicrocrackeden
dc.subjectrocksen
dc.titlePhysical and transport properties of isotropic and anisotropic cracked rocks under hydrostatic pressureen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB04202en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.identifier.doi10.1029/2005JB003710en
dc.relation.referencesAyling, M. R., P. G. Meredith, and S. A. F. Murrell (1995), Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties. 1. Elastic-wave propagation measurements on dry rocks, Tectonophysics, 245, 205– 221. Benson, P. M. (2004), Experimental study of void space, permeability and elastic anisotropy in crustal rock under ambient and isostatic pressure, Ph.D. thesis, 272 pp., Univ. of London, London. Benson, P. M., P. G. Meredith, E. S. Platzman, and R. E. White (2005), Pore fabric shape anisotropy in porous sandstone and its relation to elastic and permeability anisotropy under isostatic pressure, Int. J. Rock Mech. Min. Sci., 42, 890– 899, doi:10.1016/j.ijrmms.2005.05.003. Brace, W. F. (1980), Permeability of crystalline and argillaceous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17, 241– 251. Brace, W. F., J. B. Walsh, and W. T. Frangos (1968), Permeability of granite under high pressure, J. Geophys. Res., 73, 2225– 2236. Bruner, W. M. (1976), Comment on ‘‘Seismic velocities in dry and saturated cracked solids’’ by R. J. O’Connell and B. Budiansky, J. Geophys. Res., 81, 2573– 2576. Chun, K.-Y., G. A. Henderson, and J. Liu (2004), Temporal changes in P wave attenuation in the Loma Prieta rupture zone, J. Geophys. Res., 109, B02317, doi:10.1029/2003JB002498. Dienes, J. (1982), Permeability, percolation and statistical cracks mechanics, in Issues in Rock Mechanics, edited by R. E. Goodman and F. E. Heuze, pp. 86– 94, Am. Inst. of Min., Metal. and Pet. Eng., New York. Elsworth, D., and B. Voight (2001), The mechanics of harmonic gas pressurisation and failure of lava domes, Geophys. J. Int., 145, 187– 198. Fischer, G. J., and M. S. Paterson (1992), Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, pp. 213– 252, Elsevier, New York. Gao, Y., and S. Crampin (2004), Observations of stress relaxation before earthquakes, Geophys. J. Int., 157, 578– 582. Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool, Science, 306, 1543– 1547. Gue´guen, Y., and J. Dienes (1989), Transport properties of rocks from statistics and percolation, Math. Geol., 21, 1 –13. Gue´guen, Y., T. Chelidze, and M. Le Ravalec (1997), Microstructures, percolation thresholds, and rock physical properties, Tectonophysics, 279, 23– 35. Hudson, J. A. (1980), Overall properties of a cracked solid, Math. Proc. Cambridge Philos. Soc., 88, 371–384. Hudson, J. A. (1990), Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks, Geophys. J. Int., 102, 465–469. Hudson, J. A., E. Liu, and S. Crampin (1995), The mechanical properties of materials with interconnected cracks and pores, Geophys. J. Int., 124, 105–112. Hudson, J. A., T. Pointer, and E. Liu (2001), Effective-medium theories for fluid-saturated materials with aligned cracks, Geophys. Prospect., 49, 509–522. Jones, C., and P. Meredith (1998), An experimental study of elastic wave propagation anisotropy and permeability anisotropy in an illitic shale, paper presented at Eurock 98, Soc. of Pet. Eng., Trondheim, Norway. Kachanov, M. (1994), Elastic solids with many cracks and related problems, Adv. Appl. Mech., 30, 259–445. Kano, S., and N. Tsuchiya (2002), Parallelepiped cooling joint and anisotropy of P-wave velocity in the Takidani granitoid, Japan Alps, J. Volcanol. Geotherm. Res., 114, 465–477. Kern, H. (1978), The effect of high temperature and high confining pressure on compressional wave velocities in quartz bearing and quartz free igneous and metamorphic rocks, Tectonophysics, 44, 185– 203. Madden, T. R. (1983), Microcrack connectivity in rocks: A renormalization group approach to the critical phenomena of conduction and failure in crystalline rocks, J. Geophys. Res., 88, 585– 592. Miller, S. A. (2002), Properties of large ruptures and the dynamical influence of fluids on earthquakes and faulting, J. Geophys. Res., 107(B9), 2182, doi:10.1029/2000JB000032. Nishizawa, O. (1982), Seismic velocity anisotropy in a medium containing oriented cracks: Transverse isotropy case, J. Phys. Earth, 30, 331– 347. O’Connell, R., and B. Budiansky (1974), Seismic velocities in dry and saturated rocks, J. Geophys. Res., 79, 5412–5426. Peach, C., and C. Spiers (1996), Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock, Tectonophysics, 256, 101– 128. Rivier, N., E. Guyon, and E. Charlaix (1985), A geometrical approach to percolation through random fractured rocks, Geol. Mag., 122, 157–162. Rocchi, V., P. R. Sammonds, and C. R. J. Kilburn (2002), Flow and fracture maps for basaltic rock deformation at high temperatures, J. Volcanol. Geotherm. Res., 120, 25– 42. Sayers, C. M., and M. Kachanov (1995), Microcrack induced elastic wave anisotropy of brittle rocks, J. Geophys. Res., 100, 4149– 4156. Schubnel, A., and Y. Gue´guen (2003), Dispersion and anisotropy of elastic waves in cracked rocks, J. Geophys. Res., 108(B2), 2101, doi:10.1029/ 2002JB001824. Simmons, G., T. Todd, and W. S. Balridge (1975), Toward a quantitative relationship between elastic properties and cracks in low porosity rocks, Am. J. Sci., 275, 318– 345. Simpson, G., Y. Gue´guen, and F. Schneider (2001), Permeability enhancement due to microcrack dilatancy in the damage regime, J. Geophys. Res., 106, 3999– 4016. Stanchits, S., S. Vinciguerra, and G. Dresen (2006), Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite, Pure Appl. Geophys., in press. Vinciguerra, S., C. Trovato, P. Meredith, and P. Benson (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. Sci., 42, 900 – 910, doi:10.1016/j.ijrmms.2005.05.022. Walsh, J. B. (1965), The effect of cracks on the compressibility of rock, J. Geophys. Res., 70, 381– 389. Zimmerman, R. W. (1991), Compressibility of Sandstones, Dev. Geosci., vol. 29, 173 pp., Elsevier, New York.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBenson, P.en
dc.contributor.authorSchubnel, A.en
dc.contributor.authorVinciguerra, S.en
dc.contributor.authorTrovato, C.en
dc.contributor.authorMeredith, P. G.en
dc.contributor.authorYoung, P. R.en
dc.contributor.departmentMineral, Ice and Rock Physics Laboratory, University College London, London, UK.en
dc.contributor.departmentLassonde Institute, University of Toronto, Toronto, Ontario, Canada.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Fisica e Astronomia, Universita`di Catania, Catania, Italyen
dc.contributor.departmentMineral, Ice and Rock Physics Laboratory, University College London, London, UK.en
dc.contributor.departmentLassonde Institute, University of Toronto, Toronto, Ontario, Canada.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth Sciences, University College London,-
crisitem.author.deptENS, France-
crisitem.author.deptDipartimento di Fisica e Astronomia, Universita`di Catania, Catania, Italy-
crisitem.author.deptLassonde Institute, University of Toronto, Toronto, Ontario, Canada.-
crisitem.author.orcid0000-0002-6939-3549-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
235.pdf1.28 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

50
checked on Feb 10, 2021

Page view(s) 50

209
checked on Apr 24, 2024

Download(s) 20

510
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric