Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Malagnini, L.*
Mayeda, K.*
Uhrhammer, R.*
Akinci, A.*
Herrmann, R. B.*
Title: A Regional Ground Motion Excitation attenuation Model for the San Francisco Region
Issue Date: 2006
Keywords: Ground motion
Abstract: By using small-to-moderate-sized earthquakes located within ~200 km of San Francisco, we characterize the scaling of the ground motions for frequencies ranging between 0.25 and 20 Hz, obtaining results for geometric spreading, Q(f), and site parameters using the methods of Mayeda et al. (2005) and Malagnini et al. (2004). The results of the analysis show that, throughout the Bay Area, the average regional attenuation of the ground motion can be modeled with a bilinear geometric spreading function with a 30 km crossover distance, coupled to an anelastic function ! exp " #fr $Q( f ) % & ' ( ) * , where: Q(f)=180 f 0.42. A body-wave geometric spreading, g(r)= r -1.0, is used at short hypocentral distances (r < 30 km), whereas g(r)= r -0.6 fits the attenuation of the spectral amplitudes at hypocentral distances beyond the crossover. The frequency-dependent site effects at 12 of the Berkeley Digital Seismic Network (BDSN) stations were evaluated in an absolute sense using coda-derived source spectra. Our results show: i) the absolute site response for frequencies ranging between 0.3 Hz and 2.0 Hz correlate with independent estimates of the local magnitude residuals (dML) for each of the stations; ii) moment-magnitudes (MW) derived from our path and sitecorrected spectra are in excellent agreement with those independently derived using fullwaveform modeling as well as coda-derived source spectra; iii) we use our weak-motionbased relationships to predict motions region wide for the Loma Prieta earthquake, well above the maximum magnitude spanned by our data set, on a completely different set of stations. Results compare well with measurements taken at specific NEHRP site classes; iv) an empirical, magnitude-dependent scaling was necessary for the Brune stress parameter in order to match the large magnitude spectral accelerations and peak ground velocities with our weak-motion-based model.
Appears in Collections:Manuscripts
04.06.04. Ground motion

Files in This Item:

File SizeFormatVisibility
1291.pdf6.52 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA