Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2264
DC FieldValueLanguage
dc.contributor.authorallPiochi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallAyuso, R. A.; U.S. Geological Survey, MS 954 National Center, Reston, VA 20192, USAen
dc.contributor.authorallDe Vivo, B.; Dipartimento di Geofisica e Vulcanologia, University Federico II, Napoli, Italyen
dc.contributor.authorallSomma, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T08:31:53Zen
dc.date.available2007-07-03T08:31:53Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2264en
dc.description.abstractNew major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma–Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Srisotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation– Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 999– 1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energyconstrained assimilation–fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 1019–1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9–10 km) is a fundamental process controlling magma compositions at Mt. Somma–Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions.en
dc.format.extent879803 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofLithosen
dc.relation.ispartofseries/86 (2006)en
dc.subjectMt. Somma–Vesuvius volcanoen
dc.subjectSr isotopesen
dc.subjectGeochemistryen
dc.subjectCrustal contaminationen
dc.subjectMantle sourceen
dc.subjectPhenocryst entrapmenten
dc.titleCrustal contamination and crystal entrapment during polybaric magma evolution at Mt.Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidenceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber303– 329en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1016/j.lithos.2005.05.009en
dc.relation.referencesAnderson, H., Jackson, J., 1987. The deep seismicity of the Tyrrhenian Sea. Geophys. J.R. Astron. Soc. 91, 613– 637. Andronico, D., Cioni, R., 2002. Contrasting styles of Mt. Vesuvius activity in the period between the Avellino and Pompeii plinian eruptions, and some implications for assessment of future hazards. Bull. Volcanol. 64, 372– 391. Arno` , V., Principe, C., Rosi, M., Santacroce, R., Sbrana, A., Sheridan, M.F., 1987. Eruptive history. In: Santacroce, R. (Ed.), Somma–Vesuvius, Quaderni de bLa Ricerca ScientificaQ. CNR, Italy, p. 251. Arrighi, S., Principe, C., Rosi, M., 2001. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull. Volcanol. 63, 126–150. Auger, M., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294, 1510– 1512. Ayuso, R.A., Schulz, K.J., 2003. Nd–Pb–Sr isotope geochemistry and origin of the Ordovician Bald Mountain and Mt. Chase massive sulfide deposits, northern Maine. In: Goodfellow, W.D., et al., (Eds.), Volcanogenic Massive Sulfide Deposits of the Bathurst District and Northern Maine. Eco. Geol. Mon., vol. 11, pp. 611 – 630. Ayuso, R.A., De Vivo, B., Rolandi, G., Seal II, R.R., Paone, A., 1998. Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 82, 53– 78. Baedecker, P.A., 1987. Methods for geochemical analysis. U.S. Geol. Surv. Pap. 1770. Barberi, F., Leoni, L., 1980. Metamorphic carbonate ejecta from Vesuvius plinian eruptions: evidence of the occurrence of shallow magma chambers. Bull. Volcanol. 43 (1), 108– 120. Beccaluva, L., Di Girolamo, P., Serri, G., 1991. Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26, 191–221. Belkin, H.E., De Vivo, B., Roedder, E., Cortini, M., 1985. Fluid inclusion geobarometry from ejected Mt. Somma–Vesuvius nodules. Am. Mineral. 70, 288–303. Belkin, H.E., De Vivo, B., 1993. Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma–Vesuvius. J. Volcanol. Geotherm. Res. 58, 98– 100. Belkin, H.E., Kilburn, C.R.J., De Vivo, B., 1993a. Chemistry of the lavas and tephra from the recent (A.D. 1631–1944) Vesuvius (Italy) volcanic activity. U.S. Geological Survey OFR-93-399 (44pp.) Belkin, H.E., Kilburn, C.R.J., De Vivo, B., Trigila, R., 1993b. Sampling and analytical chemistry of the recent Vesuvius activity (1631–1944). J. Volcanol. Geotherm. Res. 58, 273– 290. Belkin, H.E., De Vivo, B., Torok, K., Webster, J.D., 1998. Preeruptive volatile content, melt–inclusion chemistry, and microthermometry on interplinian Vesuvius lavas (pre-A.D 1961). J. Volcanol. Geotherm. Res. 82 (1–4), 79– 95. Bertagnini, A., Landi, P., Rosi, M., Vigliargio, A., 1998. The Pomici di Base plinian eruption of Somma–Vesuvius. J. Volcanol. Geotherm. Res. 83 (3–4), 219– 239. Black, S., Macdonald, R., De Vivo, B., Kilburn, C.R.J., Rolandi, G., 1998. U-series disequilibria in young (AD 1944) Vesuvius rocks, preliminary implications for magma residence times and volatile addition. J. Volcanol. Geotherm. Res. 82, 97– 111. Bohrson, W.A., Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation- fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 42, 1019– 1041. Brocchini, D., Principe, C., Castradori, D., Laurenzi, M.A., Gorla, L., 2001. Quaternary evolution of the southern sector of the Campanian Plain and early Somma–Vesuvius activity, insights from the Trecase 1 well. Mineral. Petrol. 73, 67– 91. Bruno, P.P., Cippitelli, G., Rapolla, A., 1998. Seismic study of the Mesozoic carbonate basement around Mt. Somma–Vesuvius, Italy. J. Volcanol. Geotherm. Res. 84, 311 –322. Caprarelli, G., Togashi, S., De Vivo, B., 1993. Preliminary Sr and Nd isotopic data for recent lavas from Vesuvius volcano. J. Volcanol. Geotherm. Res. 58, 377– 381. Cioni, R., 2000. Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib. Mineral. Petrol. 140, 40– 54. Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R., Sbrana, A., 1995. Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber, the AD 79 plinian eruption of Vesuvius. J. Petrol. 36, 739– 776. Cioni, R., Marianelli, P., Santacroce, R., 1998. Thermal and compositional evolution of the shallow magma chambers of Vesuvius, evidence from pyroxene phenocrysts and melt inclusions. J. Geophys. Res. 103 (18), 277-18, 294. Civetta, L., Santacroce, R., 1992. Steady state magma supply in the last 3400 years of Vesuvius activity. Acta Vulcanol. 2, 147– 159 (Marinelli Volume). Civetta, L., Galati, R., Santacroce, R., 1991. Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull. Volcanol. 53, 287– 300. Civetta, L., D’Antonio, M., de Lorenzo, S., Di Renzo, V., Gasparini, P., 2004. Thermal and geochemical constraints on the ddeepT magmatic structure of Mt. Vesuvius. J. Volcanol. Geotherm. Res. 133, 1 –12. Corrado, G., Rapolla, A., 1981. The gravity field of Italy: analysis of its spectral composition and delineation of a three-dimensional crustal model for central–southern Italy. Boll. Geofis. Teor. Appl. XXIII 89, 17– 29. Cortini, M., Hermes, O.D., 1981. Sr isotopic evidence for a multi-source origin of the potassic magmas in the Neapolitan area (S. Italy). Contrib. Mineral. Petrol. 77, 47– 55. Cortini, M., Lima, A., De Vivo, B., 1985. Trapping temperatures of melt inclusions from ejected vesuvius mafic xenoliths. J. Volcanol. Geotherm. Res. 26, 167–172. Cortini, M., Ayuso, R.A., De Vivo, B., Holden, P., Somma, R., 2004. Isotopic composition of Pb and Th in interplinian volcanics from Somma–Vesuvius volcano, Italy. Mineral. Petrol. 80, 83–96. D’Antonio, M., Tilton, G.R., Civetta, L., 1996. Petrogenesis of Italian alkaline lavas deduced from Pb–Sr–Nd isotope relationships. In: Basu, A., Hart, S.R. (Eds.), Isotopic Studies of Crust–Mantle Evolution, Am. Geophys. Union Mon., vol. 95, pp. 253–267. D’Argenio, B., Pescatore, T., Scandone, P., 1973. Schema Geologico dell’Appennino Meridionale (Campania e Lucania). Roma: Accademia Nazionale dei Lincei, q. 183, Atti del Convegno bModerne vedute della geologia dell’AppenninoQ. De Astis, G., Pappalardo, L., Piochi, M., 2004. Procida volcanic history: new insights into the evolution of the Phlegrean Volcanic District (Campania region, Italy). Bull. Volcanol., doi:10.1007/s00445-004-0345-y. Del Moro, A., Fulignati, P., Marianelli, P., Sbrana, A., 2001. Magma contamination by direct wall rock interaction, constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). J. Volcanol. Geotherm. Res. 112, 15– 24. De Natale, G., Troise, C., Pingue, F., De Gori, P., Chiarabba, C., 2001. Structure and dynamics of the Somma–Vesuvius volcanic complex. Mineral. Petrol. 73, 5– 22. De Natale, G., Troise, C., Trigila, R., Dolfi, D., Chiarabba, C., 2003. Seismicity and 3D sub-structure at Somma–Vesuvius volcano: evidence for magma quenching. Earth Planet. Sci. Lett. 221, 181–196. De Vivo, B., Rolandi, G., 2001. Mt. Somma–Vesuvius and volcanism of the Campanian Plain. Mineral. Petrol. 73 (233 pp.) De Vivo, B., Scandone, R., Trigila, R., 1993. Mt-Vesuvius. J. Volc. Geotherm. Res. 58 (special issue: 381 pp.) De Vivo, B., Ayuso, R.A., Belkin, H.E., Lima, A., Rolandi, G., Somma, R., Fedele, G., 2003. Chemistry, fluid/melt inclusions and isotope data of lava and tephra from N25 ka to 1944 AD Mt. Somma–Vesuvius volcanic activity. Open File Report of Dipartimento di Geofisica e Vulcanologia, University of Napoli (Italy) Federico II. Di Maio, R., Mauriello, P., Patella, D., Petrillo, Z., Piscitelli, S., Siniscalchi, A., 1998. Electric and electromagnetic outline of the Mt. Somma–Vesuvius structural setting. J. Volcanol. Geotherm. Res. 82 (1–4), 219– 238. Fedi, M., Florio, G., Rapolla, A., 1998. 2.5D modelling of Somma– Vesuvius structure by aeromagnetic data. J. Volcanol. Geotherm. Res. 82 (1–4), 239– 247. Ferrucci, F., Gaudiosi, G., Pino, N.A., Luongo, G., Hirn, A., Mirabile, L., 1989. Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, Southern Italy). Geophys. Res. Lett. 16, 1317–1320. Finetti, I., Morelli, C., 1974. Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli. Boll. Geofis. Teor. Appl. 16, 175–222. Francalanci, L., Peccerillo, A., Poli, G., 1987. Partition coefficient for minerals in potassium-alkaline rocks: data from Roman Province (Italy). Geochem. J. 21, 1 – 10. Fujii, N., Osamura, K., Takahashi, E., 1986. Effect of water saturation on the distribution of partial melt in the olivine–pyroxene– plagioclase system. J. Geophys. Res. 91, 9253–9259. Fulignati, P., Marianelli, P., Sbrana, A., 1998. New insights on the thermometamorphic–metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanol. 10 (1), 47– 54. Fulignati, P., Marianelli, P., Me´trich, N., Santacroce, R., Sbrana, A., 2004. Towards a reconstruction of the magmatic feeding system of the 1944 eruption of Mt Vesuvius. J. Volcanol. Geotherm. Res. 133, 13– 22. Fulignati, P., Panichi, C., Sbrana, A., Caliro, S., Gioncada, A., Del Moro, A., 2005. Skarn formation at the walls of the 79 AD magma chamber of Vesuvius (Italy): mineralogical and isotopic constraints. N. Jb. Miner. Abh., 181/1, 53– 66. Gasperini, D., Blichert-Toft, J., Bosch, D., Del Moro, A., Macera, P., Albereded, F., 2002. Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J. Geophys. Res. 107 (B12), 2367, doi:10.1029/2001JB000418 (ECV 7 1-19). Gilg, H.A., Lima, A., Somma, R., Ayuso, R.A., Belkin, H.E., De Vivo, B., 1999. A fluid inclusion and isotope study of calcsilicate ejecta from Mt Somma–Vesuvius: evidence for interaction of high-temperature hypersaline fluids with the sedimentary basement. Proceedings of ECROFI XV, vol. 99 (6). Terra Nostra, Potsdam, Germany, pp. 118– 120. Gilg, H.A., Lima, A., Somma, R., Belkin, H.E., De Vivo, B., Ayuso, R.A., 2001. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineral. Petrol. 73, 145– 176. Hawkesworth, C.J., Vollmer, R., 1979. Crustal contamination versus enriched mantle: 143Nd/ 144Nd and 87Sr / 86Sr evidence from the Italian volcanics. Contrib. Mineral. Petrol. 69, 151– 165. Hofmann, A.W, Jochum, K.P., Seufert, M., White, W.M., 1986. Nd and Pb in oceanic basalts; new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45. Iannace, A., 1991. Ambienti deposizionali e processi diagenetici in successione di piattaforma carbonatica del Trias Superiore nei Monti Lattari e Picentini (Salerno). PhD Thesis, Universita` bFederico IIQ, Napoli, Italy, p. 221. Imbo` , G., 1949. L’attivita` eruttiva vesuviana e relative osservazioni nel corso dell’intervallo intereruttivo 1906–1944 ed in particolare del parossismo del marzo 1944. Annali Osservatorio Vesuviano, Napoli 5, 185–380. Ippolito, F., D’Argenio, B., Pescatore, T., Scandone, P., 1975. Structural–stratigraphic units and tectonic framework of southern Appennines. In: Squyres, C. (Ed.), Geology of Italy. Lybian Society of Earth Science. Libyan Arab Republic, pp. 317– 328. Joron, J.L., Metrich, N., Rosi, M., Santocroce, R., Sbrana, A., 1987. Chemistry and petrography. In: Santacorce, R. (Ed.), Somma– Vesuvius, Quad. Ric. Sci., vol. 114. CNR, pp. 105– 174. Landi, A., Bertagnini, A., Rosi, M., 1999. Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma–Vesuvius (Italy). Contrib. Mineral. Petrol. 135, 179– 197. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 27, 745– 750. Lima, A., Danyushevsky, L.V., De Vivo, B., Fedele, L., 2003. A model for the evolution of the Mt. Somma–Vesuvius magmatic system based on fluid and melt inclusion investigations. In: De Vivo, B., Bodnar, R.J. (Eds.), Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, Volume Series: Development in Volcanology, vol. 5. Elsevier, pp. 227– 249. Marianelli, P., Me´trich, N., Santacroce, R., Sbrana, A., 1995. Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolcanoes. Contrib. Mineral. Petrol. 120, 159–169. Marianelli, P., Me´trich, N., Sbrana, A., 1999. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull Volcanol. 61, 48– 63. Milano, M., Vilardo, G., Luongo, G., 1994. Continental collision and basin opening in Southern Italy: a new plate subduction in the Tyrrhenian Sea? Tectonophys 230, 249– 264. Paone, A., 2005. Evidence of crustal contamination, sediment, and fluid components in the Campanian volcanic rocks. J. Volcanol. Geotherm. Res. 138, 1 – 26. Paone, A., Ayuso, R.A., De Vivo, B., 1998. A metallogenic survey of alkalic rocks of Mt. Somma–Vesuvius volcano. Mineral. Petrol. 73, 201– 233. Pappalardo, L., Piochi, M., DQantonio, M., Civetta, L., Petrini, R., 2002. Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd, and Pb isotope data. J. Petrol. 43, 1415–1434. Pappalardo, L., Piochi, M., Mastrolorenzo, G., 2004. The 3800 yr BP–1944 AD magma plumbing system of Somma–Vesuvius: constraints on its behaviour and present state through a review of isotope data. Ann. Geophys. 47 (4), 1363–1375. Pearce, J.A., 1983. Role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva Publ., Nantwich, United Kingdom, pp. 230– 249. Peccerillo, A., 2001. Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli Volcanoes: petrogenetic, geodynamic and volcanological implications. Mineral. Petrol. 73, 93– 105. Peccerillo, A., 2003. Plio–Quaternary magmatism in Italy. Episodes 26, 222–226. Peccerillo, A., Manetti, P., 1985. The potassic alkaline volcanism of central southern Italy: a review of the data relevant to petrogenesis and geodynamic significance. Trans. Geol. Soc. South Africa 88, 379– 394. Piochi, M., Pappalardo, L., De Astis, G., 2004. Geochemical and isotopical variation within the Campanian Comagmatic Province: implications on magma source composition. Ann. Geophys., Ann. Geophysics 47 (4), 1485–1499. Piochi, M., Ayuso, R.A., De Vivo, B., in press. The magma feeding system of Somma–Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data. In: B. De Vivo (Ed.), Campanian Volcanism, Volume Series: Developments in Volcanology 5, Elsevier. Raia, F., Webster, J.D., De Vivo, B., 2000. Pre-eruptive volatile contents of Vesuvius magmas: constraints on eruptive history and behavior: I. The medieval and modern interplinian activities. Eur. J. Mineral. 12, 179– 193. Rittman, A., 1933. Die geologische bedingte Evolution und Differentiation des Somma–Vesuvius magmas. Z. Vulkanol. 15, 1–2. Rolandi, G., Maraffi, S., Petrosino, P., Lirer, L., 1993. The Ottaviano eruption of Somma–Vesuvius (8000 y BP): a magmatic alternating fall and flow-forming eruption. J. Volcanol. Geotherm. Res. 58, 43– 65. Rolandi, G., Petrosino, P., Mc Geehin, J., 1998. The interplinian activity at Somma–Vesuvius in the last 3500 years. J. Volcanol. Geotherm. Res. 82, 19– 52. Rolandi, G., Bellucci, F., Cortini, M., 2004. A new model for the formation of the Somma Caldera. Mineral. Petrol. 80, 27– 44. Rosi, M., Santacroce, R., 1983. The AD 472 bPollenaQ eruption: volcanological and petrological data for this poorly-known, plinian-type event at Vesuvius. J. Volcanol. Geotherm. Res. 17, 249– 271. Santacroce, R., 1987. Somma–Vesuvius. Quaderni de bLa Ricerca ScientificaQ. CNR, p. 251. Santacroce, R., Bertagnini, A., Civetta, L., Landi, P., Sbrana, A., 1993. Eruptive dynamics and petrogenetic processes in a very shallow magma reservoir: the 1906 eruption of Vesuvius. J. Petrol. 34, 383– 425. Savelli, C., 1967. The problem of rock assimilation by Somma– Vesuvius magmas: I. Compositions of Somma–Vesuvius lavas. Contrib. Mineral, Petrol. 16, 328–353. Savelli, C., 1968. The problem of rock assimilation by Somma– Vesuvius magmas: II. Compositions of sedimentary rocks and carbonate ejecta from Vesuvius area. Contrib. Mineral. Petrol. 18, 43– 64. Signorelli, S., Vaggelli, G., Romano, C., 1999. Pre-eruptive volatile (H2O, F, Cl and S) contents of phonolitic magmas feeding the 3550-year old Avellino eruption from Vesuvius, southern Italy. J. Volcanol. Geotherm. Res. 93 (3–4), 237– 256. Somma, R., Ayuso, R.A., De Vivo, B., Rolandi, G., 2001. Major, trace element and isotope geochemistry (Sr–Nd–Pb) of interplinian magmas from Mt. Somma–Vesuvius (southern Italy). Mineral. Petrol. 73, 121– 143. Spera, F.J., De Vivo, B., Ayuso, R.A., Belkin, H.E., 1998. Mt. Somma–Vesuvius. J. Volcanol. Geotherm. Res. 82 (special issue: 247 pp.). Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes. I. General model and energy constrained– assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 42 (5), 999– 1018. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in Oceanic Basins. Geol. Soc. London Sp. Pub., vol. 42, pp. 315– 345. Taylor, S.R., Mc Lennan, S.M., 1985. The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publication, Oxford. 46 pp. Tracy, C.S., Frost, B.R., 1991. Phase equilibria and thermobarometry of calcareous, ultramafic rocks, and iron formations. Mineral. Soc. Am. Rev. Mineral. 26, 207– 290. Trigila, R., De Benedetti, A., 1993. Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratios analysis and experimental phase equilibria. J. Volcanol. Geotherm. Res. 58, 315– 343. Turi, B., Taylor, H.P., 1976. Oxygen isotope studies of potassic volcanic rocks of the Roman Province, central Italy. Contrib. Mineral. Petrol. 55, 1– 31. Villemant, B., Trigila, R., De Vivo, B., 1993. Geochemistry of Vesuvius volcanics during 1631–1944 period. J. Volcanol. Geotherm. Res. 58, 291– 313. Webster, J.D., De Vivo, B., Tappen, C., 2003. Volatiles, magmatic degassing and eruptions of Somma–Vesuvius: constraints from silicate melt inclusions, Cl and H2O solubility experiments and modeling. In: De Vivo, B., Bodnar, R.J. (Eds.), Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, Volume Series: Developments in Volcanology, vol. 5. Elsevier, pp. 207– 226. Zollo, A., Gasparini, P., Virieux, J., Le Meur, H., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Mirabile, L., Vilardo, G., 1996. Seismic evidence for a low-velocity zone in the upper crust beneath Mt. Vesuvius. Science 274, 592– 594.en
dc.description.fulltextreserveden
dc.contributor.authorPiochi, M.en
dc.contributor.authorAyuso, R. A.en
dc.contributor.authorDe Vivo, B.en
dc.contributor.authorSomma, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentU.S. Geological Survey, MS 954 National Center, Reston, VA 20192, USAen
dc.contributor.departmentDipartimento di Geofisica e Vulcanologia, University Federico II, Napoli, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptU.S. Geological Survey, MS 954 National Center, Reston, VA 20192, USA-
crisitem.author.deptDipartimento di Geofisica e Vulcanologia, University Federico II, Napoli, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-4214-1998-
crisitem.author.orcid0000-0002-2227-6054-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1061.pdf859.18 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

40
checked on Feb 10, 2021

Page view(s) 20

294
checked on Apr 20, 2024

Download(s)

39
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric