Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2246
DC FieldValueLanguage
dc.contributor.authorallGiordano, D.; Department of Geological Sciences, Third University of Rome, Largo Leonardo Murialdo 1, 00154 Rome, Italyen
dc.contributor.authorallMangiacapra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPotuzak, M.; Department of Earth and Environmental Sciences, Munich University, Theresienstr. 41/III, 80333 Munich, Germanyen
dc.contributor.authorallRussel, J. K.; Volcanology and Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canadaen
dc.contributor.authorallRomano, C.; Department of Geological Sciences, Third University of Rome, Largo Leonardo Murialdo 1, 00154 Rome, Italyen
dc.contributor.authorallDingwell, D. B.; Department of Earth and Environmental Sciences, Munich University, Theresienstr. 41/III, 80333 Munich, Germanyen
dc.contributor.authorallDi Muro, A,; Laboratoire de Physique et Chimie des Systèmes Volcaniques, Paris VI-IPGP, 4 Place Jussieu, Paris, Franceen
dc.date.accessioned2007-07-03T08:12:46Zen
dc.date.available2007-07-03T08:12:46Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2246en
dc.description.abstractWe present new viscosity measurements for melts spanning a wide range of anhydrous compositions including: rhyolite, trachyte, moldavite, andesite, latite, pantellerite, basalt and basanite. Micropenetration and concentric cylinder viscometry measurements cover a viscosity range of 10−1 to 1012 Pas and a temperature range from 700 to 1650 °C. These new measurements, combined with other published data, provide a high-quality database comprising ∼800 experimental data on 44 well-characterized melt compositions. This database is used to recalibrate the model proposed by Giordano and Dingwell [Giordano, D., Dingwell, D. B., 2003a. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349] for predicting the viscosity of natural silicate melts. The present contribution clearly shows that: (1) the viscosity (η)–temperature relationship of natural silicate liquids is very well represented by the VFT equation [log η=A+B/ (T−C)] over the full range of viscosity considered here, (2) the use of a constant high-T limiting value of melt viscosity (e.g., A) is fully consistent with the experimental data, (3) there are 3 different compositional suites (peralkaline, metaluminous and peraluminous) that exhibit different patterns in viscosity, (4) the viscosity of metaluminous liquids is well described by a simple mathematical expression involving the compositional parameter (SM) but the compositional dependence of viscosity for peralkaline and peraluminous melts is not fully controlled by SM. For these extreme compositions we refitted the model using a temperature-dependent parameter based on the excess of alkalies relative to alumina (e.g., AE/SM). The recalibrated model reproduces the entire database to within 5% relative error (e.g., RMSE of 0.45 logunits).en
dc.format.extent717294 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries1-2/229 (2006)en
dc.subjectViscosityen
dc.subjectModelen
dc.subjectSilicate meltsen
dc.subjectMetaluminousen
dc.subjectPeraluminousen
dc.subjectPeralkalineen
dc.titleAn expanded non-Arrhenian model for silicate melt viscosity: A treatment for metaluminous, peraluminous and peralkaline liquidsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber42–56en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.chemgeo.2006.01.007en
dc.relation.referencesAlibidirov, N., Dingwell, D.B., Stevenson, R.J., Hess, K.-U.,Webb, S. L., Zinke, J., 1997. Physical properties of the 1980 Mount St. Helens cryptodome magma. Bull. Volcanol. 59, 103–111. Angell, C.A., 1985. Strong and fragile liquids. In: Ngai, K.L., Wright, G.B. (Eds.), Relaxations in Complex Systems. U.S. Department of Commerce National Technical Information Service, Springfield, VA, pp. 3–11. Angell, C.A., 1995. Formation of glasses from liquids and byopolymers. Science 265, 1924–1935. Baker, D.R., Vaillancourt, J., 1995. The low viscosities of F+H2Obearing granitic melts and implications for melt extraction and transport. Earth Planet. Sci. Lett. 132, 199–211. Bottinga, Y., Weill, D., 1972. The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475. Bouhifd, A.M., Richet, P., Besson, P., Roskosz, M., Ingrin, J., 2004. Redox state, microstructure and viscosity of a partially crystallized basalt melt. Earth Planet. Sci. Lett. 218, 31–44. Brown, G.E., Farges, F., Calas, G., 1995. X-ray scattering and X-ray spectroscopy studies of silicate melts. Rev. Mineral. 32, 317–410. Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Haiken, G., Ort, M., 1997. Geochemical zoning, mingling, eruptive dynamics and depositional process. The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 75, 183–219. Deino, A.L., Orsi, G., Piochi, M., de Vita, S., 2004. The age of the Neapolitan Yellow Tuff caldera-forming eruption Campi Flegrei caldera–Italy. Assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170. Dingwell, D.B., 1995. Relaxation in silicate melts: applications. In: Stebbins, J., McMillan, P.F., Dingwell, D.B. (Eds.), Structure, Dynamics and Properties of Silicate Melts. Reviews in Mineralogy, vol. 32. Mineralogical Society of America, Washington, DC, pp. 21–66. Dingwell, D.B., Virgo, D., 1988. Melt viscosities in the Na2O–FeO– Fe2O3–SiO2 system and factors controlling the relative viscosities of fully polymerised silicate melts. Geochim. Cosmochim. Acta 52, 395–403. Dingwell, D.B., Romano, C., Hess, K.U., 1996. The effect of water on the viscosity of a haplogranitic melt under P-T-X-conditions relevant to silicic volcanism. Contrib. Mineral. Petrol. 124, 19–28. Dingwell, D.B., Hess, K.U., Romano, C., 1998a. Viscosity data for hydrous peraluminous granitic melts: comparison with a metaluminous model. Am. Mineral. 83, 236–239. Dingwell, D.B., Hess, K.U., Romano, C., 1998b. Extremely fluid behaviour of hydrous peralkaline rhyolites. Earth Planet. Sci. Lett. 158, 31–38. Dingwell, D.B., Hess, K.U., Romano, C., 2000. Viscosities of granitic sensu lato.: influence of the anorthite component. Am. Mineral. 85, 1342–1348. Di Vito, M.M., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., et al., 1999. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera Italy. J. Volcanol. Geotherm. Res. 91, 221–246. Frenkel, Y.I., 1959. The Kinetic Theory of Liquids. Selected Works, vol. 3. Izd. Akad. Nauk SSSR, Moscow (in Russian). Fulcher, G.S., 1925. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355. Giordano, D., Dingwell, D.B., 2003a. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349. Giordano, D., Dingwell, D.B., 2003b. The kinetic fragility of natural silicate liquids. J. Phys., Condens. Matter 15, S945–S954. Giordano, D., Dingwell, D.B., Romano, C., 2000. Viscosity of a Teide phonolite in the welding interval. J. Volcanol. Geotherm. Res. 103, 239–245. Giordano, D., Polacci, M., Dingwell, D.B., Papale, P., Kasereka, M., Potuzak, M., et al., submitted for publication. Textural and rheological constraints on the dynamics of the January 17th, 2002 fissure eruption at Mount Nyiragongo. Geophys. Res. Lett. Glasstone, S., Laidler, K., Eyring, H., 1941. Theory of Rate Processes. McGraw-Hills, New York. Greaves, G.N., Ngai, K.L., 1995. Reconciling ionic-transport properties with atomic structure in oxide glasses. Phys. Rev., B 52, 6358–6380. Hess, K.U., Dingwell, D.B., 1996. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300. Hess, K.U., Dingwell, D.B.,Webb, S.L., 1995. The influence of excess alkalis on the viscosity of a haplogranitic melt. Am. Mineral. 80, 297–304. Hess, K.U., Dingwell, D.B., Gennaro, C., Mincione, V., 2001. Viscosity-temperature behaviour of dry melts in the Qz–Ab–Or system. Chem. Geol. 174, 133–142. Horbach, J., Kob, W., Binder, K., 2001. Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation. Chem. Geol. 174, 87–102. Hummel, W., Arndt, J., 1985. Variation of viscosity with temperature and composition in the plagioclase system. Contrib. Mineral. Petrol. 90, 83–92. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanetti, R., 1986. A chemical classification of volcanic rocks based on the total-alkalisilica diagram. J. Petrol. 27, 745–750. Mangiacapra, A., Giordano, D., Potuzak, Dingwell, D.B., 2005. Modelling Non-Arrhenian Multicomponent Melt Viscosity: The Effect of the Iron Oxidation State in Progress. Mangiacapra, A., Di Matteo, V., Giordano, D., Nichols, A.R.L., Dingwell, D.B., Orsi, G., 2005. Water and the Viscosity of Shoshonitic and Latitic Melts in Progress. Meyer, A., Schober, H., Dingwell, D.B., 2002. Structure, structural relaxation and ion diffusion in sodium disilicate melts. Eur. Lett. 59, 708–713. Mysen, B.O., 1988. Structure and Properties of Silicate Melts. Elsevier, Amsterdam. 354 pp. Myuller, R.L., 1955. A valence theory of viscosity and fluidity for high-melting glass-forming materials in the critical temperature range. Zh. Prikl. Khim. 28, 1077–1087. Neuville, D.R., Courtial, P., Dingwell, D.B., Richet, P., 1993. Thermodynamic and rheological properties of rhyolite and andesite melts. Contrib. Mineral. Petrol. 113, 572–581. Ohlhorst, S., Behrens, Holtz, F., 2001. Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses. Chem. Geol. 174, 5–20. Persikov, E.S., 1991. The viscosity of magmatic liquids: experiment generalized patterns, a model for calculation and prediction, applications. In: Perchuk, L.L., Kushiro, I. (Eds.), Physical Chemistry of Magmas, Advances in Physical Chemistry. Springer, Berlin, pp. 1–40. Poggemann, J.F., Heide, G., Frischat, G.H., 2003. Direct view of the structure of different glass fracture surfaces by atomic force microscopy. J. Non-Cryst. Solids 326/327, 15–20. Richet, P., 1984. Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471–483. Richet, P., Bottinga, Y., 1995. Rheology and configurational entropy of silicate melts. In: Stebbins, J., McMillan, P.F., Dingwell, D.B. (Eds.), Structure, Dynamics and Properties of Silicate Melts. Reviews in Mineralogy, vol. 32. Mineralogical Society of America, Washington, DC, pp. 21–66. Richet, P., Lejeune, A.M., Holtz, F., Roux, J., 1996. Water and the viscosity of andesite melts. Chem. Geol. 128, 185–197. Russell, J.K., Giordano, D., 2005. A model for silicate melt viscosity in the System MgSi2O6–CaAl2Si2O8–NaAlSi3O8. Geochim. Cosmochim. Acta. 69, 5333–5349. Russell, J.K., Giordano, D., Dingwell, D.B., Hess, K.U., 2002. Modelling the non-Arrhenian rheology of silicate melts: numerical considerations. Eur. J. Mineral. 14, 417–427. Russell, J.K., Giordano, D., Dingwell, D.B., 2003. High-temperature limits on viscosity of non-Arrhenian silicate melts. Am. Mineral. 88, 1390–1394. Shaw, H.R., 1972. Viscosities of magmatic silicate liquids: an empirical model of prediction. Am. J. Sci. 272, 438–475. Tammann, G., Hesse, W., 1926. Die Abhängigkeit der Viskosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257. Toplis, M.J., Dingwell, D.B., Hess, K.U., Lenci, T., 1997. Viscosity, fragility and configurational entropy of melts along the join SiO2– NaAlSiO4. Am. Mineral. 82, 979–990. Vogel, D.H., 1921. Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z. 22, 645–646. Webb, S.L., Müller, E., Büttner, H., 2004. Anomalous rheology of peraluminous melts. Am. Mineral. 89, 812–818. Whittington, A., Richet, P., Linard, Y., Holtz, F., 2000. Water and the viscosity of depolymerised aluminosilicate melts. Geochim. Cosmochim. Acta 64, 3725–3736. Whittington, A., Richet, P., Linard, Y., Holtz, F., 2001. The viscosity of hydrous phonolites and trachytes. Chem. Geol. 174, 209–223.en
dc.description.fulltextreserveden
dc.contributor.authorGiordano, D.en
dc.contributor.authorMangiacapra, A.en
dc.contributor.authorPotuzak, M.en
dc.contributor.authorRussel, J. K.en
dc.contributor.authorRomano, C.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.authorDi Muro, A,en
dc.contributor.departmentDepartment of Geological Sciences, Third University of Rome, Largo Leonardo Murialdo 1, 00154 Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth and Environmental Sciences, Munich University, Theresienstr. 41/III, 80333 Munich, Germanyen
dc.contributor.departmentVolcanology and Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canadaen
dc.contributor.departmentDepartment of Geological Sciences, Third University of Rome, Largo Leonardo Murialdo 1, 00154 Rome, Italyen
dc.contributor.departmentDepartment of Earth and Environmental Sciences, Munich University, Theresienstr. 41/III, 80333 Munich, Germanyen
dc.contributor.departmentLaboratoire de Physique et Chimie des Systèmes Volcaniques, Paris VI-IPGP, 4 Place Jussieu, Paris, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, Università di Torino-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDepartment of Earth and Environmental Sciences, Munich University, Theresienstr. 41/III, 80333 Munich, Germany-
crisitem.author.deptVolcanology and Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada-
crisitem.author.deptUniversità degli Studi di Roma Tre, Dipartimento di Scienze-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.deptDipartimento di Scienze della Terra, Pisa, Italy-
crisitem.author.orcid0000-0003-1271-5516-
crisitem.author.orcid0000-0001-8393-923X-
crisitem.author.orcid0000-0003-1442-7729-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
684.pdf700.48 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

76
checked on Feb 10, 2021

Page view(s) 50

219
checked on Apr 17, 2024

Download(s)

35
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric