Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2245
DC FieldValueLanguage
dc.contributor.authorallSpilliaert, N.; Laboratoire Pierre Süe, CEA–CNRS, CE-Saclay, 91191 Gif sur Yvette, Franceen
dc.contributor.authorallMétrich, M.; Laboratoire Pierre Süe, CEA–CNRS, CE-Saclay, 91191 Gif sur Yvette, Franceen
dc.contributor.authorallAllard, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-07-03T08:10:23Zen
dc.date.available2007-07-03T08:10:23Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2245en
dc.description.abstractOur knowledge of the degassing pattern of sulphur, chlorine and fluorine during ascent and eruption of basaltic magmas is still fragmental and mainly limited to water-poor basalts. Here we model and discuss the pressure-related degassing behaviour of S, Cl and F during ascent, differentiation and extrusion of H2O–CO2-rich alkali basalt on Mount Etna (Sicily) as a function of eruptive styles. Our modelling is based on published and new melt inclusion data for dissolved volatiles (CO2, H2O, S, Cl, F) in quenched explosive products from both central conduit (1989–2001) and lateral dyke (2001 and 2002) eruptions. Pressures are obtained from the dissolved H2O and CO2 concentrations, and vapour–melt partition coefficients of S, Cl and F are derived from best fitting of melt inclusion data for each step of magma evolution. This allows us to compute the compositional evolution of the gas phase during either open or closed system degassing and to compare it with the measured composition of emitted gases. We find that sulphur, chlorine and fluorine begin to exsolve at respective pressures of ∼140 MPa, ∼100 MPa and ≤10 MPa during Etna basalt ascent and are respectively degassed at >95%, 22–55%, and ∼15% upon eruption. Pure open system degassing fails to explain gas compositions measured during either lateral dyke or central conduit eruptions. Instead, closed-system ascent and eruption of the volatile-rich basaltic melt well accounts for the time-averaged gas composition measured during 2002-type lateral dyke eruptions (S/Cl molar ratio of 5±1, 35% bulk Cl loss). Extensive magma fragmentation during the most energetic fountaining phases enhances Cl release (55%) and produces a lower S/Cl ratio of 3.7, as actually measured. Comparatively slower magma rise in the central conduits of Etna favours both sulphide saturation of the melt and greater chlorine release (55%), resulting in a distinct S/Cl evolution path and final ratio in eruptive gas. In both eruption types, any previous bubble–melt separation at depth leads to increased S/Cl and S/F ratios in emitted gas. High S/Cl ratios measured during some discrete eruptive events can thus be explained by transitions from closed (deep) to open (shallow) system degassing, with differential gas transfer extending down to ∼2 km depth below the vents. This depth coincides with the base of the volcanic pile where structural discontinuities and the high magma vesicularity (60%) may favour separate gas flow. Finally, the excess S–Cl–F gas discharge through Etna summit craters during non-eruptive periods requires a mixed supply from shallow magma degassing in the volcanic conduits and deeper-derived SO2-rich bubbles from the sub-volcano plumbing system. Our modelling provides a useful reference framework for interpreting the monitored variations of S, Cl and F in Mount Etna gas emissions as a function of volcanic activity. More broadly, the observations made for S, Cl and F degassing on Etna may apply to other basaltic volcanoes with water-rich magmas, such as in arcs.en
dc.format.extent663124 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/248 (2006)en
dc.subjectMt Etnaen
dc.subjectvolatilesen
dc.subjectmagma degassingen
dc.subjecteruptive mechanismsen
dc.subjectmodellingen
dc.titleS–Cl–F degassing pattern of water-rich alkali basalt: Modelling and relationship with eruption styles on Mount Etna volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber772-786en
dc.identifier.URLwww.sciencedirect.comen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.epsl.2006.06.031en
dc.relation.references[1] M.R. Carroll, J.D. Webster, Solubility of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas, in: M.R. Carroll, J.R. Holloway (Eds.), Volatiles in Magmas, vol. 30, Mineral. Soc. Amer., Washington, DC, 1994, pp. 231–279. [2] A. Robock, C. Oppenheimer, Volcanism and the Earth's Atmosphere, AGU (Geophysical Monograph Series), vol. 139, 2003, p. 360. [3] J.W. Hedenquist, J.B. Lowenstern, The role of magma in the formation of hydrothermal ore deposits, Nature 370 (1994) 519–527. [4] I.A. Menyailov, Prediction of eruptions using changes in composition of volcanic gases, Bull. Volcanol. 39 (1975) 112–125. [5] P. Allard, S. Alparone, M. Amore, N. Bruno, L. Brusca, M. Burton, T. Caltabiano, M. Mattia, F. Mure, E. Privitera, R. Romano, M. Rossi, T. Sgroi, L. Villari, Short-term variations in magma dynamics at mount Etna detected by combined geochemical and geophysical monitoring (August–November 2000), European Geophys. Soc. Assembly, Nice, March 25–30 2001. [6] A.T. Anderson, Chlorine, sulfur and water in magmas and oceans, Am. Bull. Geol. Soc. 85 (1974) 1485–1492. [7] D.W. Muenow, D.G. Graham, N.W.K. Liu, J.R. Delaney, The abundance of volatiles in Hawaiian tholeiitic submarine basalts, Earth Planet. Sci. Lett. 42 (1979) 71–76. [8] T. Thordarson, S. Self, Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group,Washington, USA, J. Volcanol. Geotherm. Res. 74 (1996) 49–73. [9] T. Thordarson, S. Self, N. Oskarsson, T. Hulsechosch, Sulfur, chlorine and fluorine degassing and atmospheric loading by the 1783–1784 AD (Skaftar Fires) eruption in Iceland, Bull. Volcanol. 58 (1996) 205–225. [10] N. Métrich, A. Bertagnini, P. Landi, M. Rosi, Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy), J. Petrol. 42 (2001) 1471–1490. [11] N. Métrich, P. Allard, N. Spilliaert, D. Andronico, M. Burton, 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna's evolution in the last three decades, Earth Planet. Sci. Lett. 228 (2004) 1–17. [12] N. Spilliaert, P. Allard, N. Métrich, A.V. Sobolev, Melt inclusion record of the conditions of ascent, degassing and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy), J. Geophys. Res. 111 (2006) B04203, doi:10.1029/2005/JB003934. [13] N. Spilliaert, Dynamiques de remontée, dégazage et éruption des magmas basaltiques par les inclusions vitreuses et modelisation des processus dans le cas de l'Etna, 2000–2002, PhD Thesis IPG-Paris, 2006, pp 250. [14] J.R. Delaney, D.W. Muenow, D.G. Graham, Abundance and distribution of water, carbon and sulfur in the glassy rims of submarine pillow basalts, Geochim. Cosmochim. Acta 42 (1978) 581–594. [15] C.D. Byers, D.W. Muenow, M.O. Garcia, Volatiles in basalts and andesites from Galapagos spreading center, 85° to 86°, Geochim. Cosmochim. Acta 47 (1983) 1551–1558. [16] P.J. Michael, J.G. Schilling, Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components, Geochim. Cosmochim. Acta 53 (1989) 3131–3143. [17] H. Bureau, N. Metrich, M. Semet, T. Staudacher, Fluid–magma decoupling in a hot spot volcano, Geophys. Res. Lett. 26 (1999) 3501–3504. [18] J.E. Dixon, D.A Clague, P. Wallace, R. Poreda, Volatiles in alkali basalts from the North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas, J. Petrol. 38 (1997) 911–939. [19] C.K. Unni, J.G. Schilling, Cl and Br degassing by volcanism along the Reykjanes Ridge and Iceland, Nature 272 (1978) 19–23. [20] T.M. Gerlach, Exsolution of H2O, CO2, and S during eruptive episodes at Kilauea volcano, Hawaii, J. Geophys. Res. 91 (12) (1986) 177–185. [21] E.B. Watson, Diffusion in volatile-bearing magmas, in: M.R. Carroll, J.R. Holloway (Eds.), Volatiles in Magmas, vol. 30, Mineral. Soc. Amer., Washington, DC, 1994, pp. 371–409. [22] P.Wallace,Volatiles in subduction zonemagmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res. 140 (2005) 217–240. [23] P. Allard, P. Jean-Baptiste,W. D'Alessandro, F. Parello, B. Parisi, C. Flehoc, Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy, Earth Planet. Sci. Lett. 148 (3–4) (1997) 501–516. [24] N.Métrich, R. Clocchiatti,M.Mosbah, M. Chaussidon, The 1989– 1990 activity of Etna magma mingling and ascent of H2O–Cl–Srich basaltic magma. Evidence from melt inclusions, J. Volcanol. Geotherm. Res. 59 (1993) 131–144. [25] P. Allard, S. Alparone, D. Andronico, M. Burton, L. Lodato, F. Mure, T. Zgroi, Source process of cyclic fire fountaining at Mount Etna in 2000: a multidisciplinary study of the June 14 (63rd) event, Geophys. Res. Abstr. 5 (2003) 13079. [26] S. La Delfa, G. Patane, R. Clocchiatti, J.-L. Joron, J.-C. Tanguy, The February 1999 fissure eruption of Mt Etna: inferredmechanism from seismological and geochemical data, J. Volcanol. Geotherm. Res. 105 (2001) 121–139. [27] R. Moretti, Volatiles solubility with particular regard to sulphur species: theoretical aspects and application to Etnean volcanics, PhD Thesis, Univ. Pisa, Italy, 2001. [28] P. Allard, A. Aiuppa, S. Bellomo, N. Bruno, M. Burton, T. Caltabiano, C. Federico, E. Longo, F. Mure, Evolution of magma degassing during the July–August 2001 eruption of Mount Etna tracked by COSPEC–FTIR remote sensing and filter pack sampling, Proceed. GNV Assembly, Roma, Italy, October 9–11 2001. [29] M. Burton, P. Allard, F. Mure, C. Oppenheimer, FTIR remote sensing of fractional magma degassing at Mt. Etna, Sicily, Spec. Publ. - Geol. Soc. 213 (2003) 281–293. [30] A. Aiuppa, C. Federico, G. Giudice, S. Gurrieri, A. Paonita, M. Valenza, Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes, Earth Planet. Sci. Lett. 222 (2004) 469–483. [31] P. Allard, M. Burton, F. Mure, Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas, Nature 433 (2005) 407–410. [32] D. Andronico, et al., A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system, Bull. Volcanol. 67 (2005) 314–330. [33] P. Francis, A. Maciejewski, C. Chaffin, C. Oppenheimer, T. Caltabiano, SO2 and HCl ratios in the plumes of Mount Etna and Vulcano determined by Fourier transform spectroscopy, Geophys. Res. Lett. 22 (1995) 1717–1720. [34] M. Pennisi, M.-F. Le Cloarec, Variations of Cl, F, and S in Mount Etna's plume, Italy, between 1992 and 1995, J. Geophys. Res. 103 (B3) (1998) 5061. [35] D.K. Chester, A.M. Duncan, J.E. Guest, C.R.J. Kilburn, Mount Etna: the Anatomy of a Volcano, Chapman and Hall, London, 1985 404 pp. [36] S. Branca, P. Del Carlo, Eruption of Mt. Etna during the past 3200 years: a revised compilation integrating the historical and stratigraphic records, in: A. Bonaccorso, B. Calvari, M. Coltelli, C. Del Negro, S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory, Geophysical Monograph Series, vol. 143, AGU, Washington DC, 2004, pp. 49–64. [37] P. Allard, Endogenous magma degassing and storage at Mount Etna, Geophys. Res. Lett. 24 (1997) 2219–2222. [38] T. Caltabiano, M. Burton, S. Giammanco, P. Allard, N. Bruno, F. Mure, R. Romano, Volcanic gas emission from the summit craters and flanks of Mt. Etna, 1987–2000, in: A. Bonaccorso, B. Calvari, M. Coltelli, C. Del Negro, S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory, Geophysical Monograph Series, vol. 143, AGU, Washington DC, 2004, pp. 111–128. [39] B. Bencke, M. Neri, The July–August 2001 eruption of Mt Etna (Sicily), Bull. Volcanol. 65 (2003) 461–476. [40] R. Clocchiatti, M. Condomines, N. Guenot, J.-C. Tanguy, Magma changes at Mount Etna: the 2001 and 2002–2003 eruptions, Earth Planet. Sci. Lett. 226 (2004) 397–414. [41] A. Bonaccorso, M. Aloisi, M. Mattia, Dike emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data, Geophys. Res. Lett. 29 (2002) 13. [42] D. Patane, P. De Gori, C. Chiarabba, A. Bonaccorso, Magma ascent and the pressurization of Mount Etna's volcanic system, Science 299 (2003) 2061–2063. [43] R.A. Corsaro, M. Pompilio, Dynamics of magmas at Mount Etna, in: A. Bonaccorso, B. Calvari, M. Coltelli, C. Del Negro, S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory, Geophysical Monograph Series, vol. 143, AGU, Washington DC, 2004, pp. 91–110. [44] M. Mosbah, N. Métrich, P. Massiot, PIGME fluorine determination using a nuclear microprobe with application to glass inclusions, Nucl. Instrum. Methods Phys. Res., B 58 (1991) 227–231. [45] S.M. Straub, G.D. Layne, The systematics of chlorine, fluorine and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones, Geochim. Cosmochim. Acta 67 (2003) 4179–4203. [46] J.C. Tanguy, R. Clocchiatti, The Etnean lavas, 1977–1983: petrology and mineralogy, Bull. Volcanol. 47–4 (1984) 879–894. [47] N. Metrich, R. Clocchiatti, Melt inclusion investigation of the volatile behavior in historic alkaline magmas of Etna, Bull. Volcanol. 51 (1989) 185–198. [48] R. Clocchiatti, N. Metrich, Temoignages de la contamination dans les produits des eruptions explosives des Mts. Silvestri (1892) et Mts. Rossi (1669), Mt. Etna, Bull. Volcanol. 47/2 (1984) 909–928. [49] S. Newman, J.B. Lowenstern, Volatilecalc: a silicate melt–H2O– CO2 solution model written in VISUAL BASIC Excel, Comput. Geosci. 28 (5) (2002) 597–604. [50] R.A. Corsaro, M. Pompilio, Buoyancy-controlled eruption of magmas at Mt Etna, Terra Nova 16 (1) (2004) 16–22. [51] N. Métrich, P. Schiano, R. Clocchiatti, R. Maury, Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines), Earth Planet. Sci. Lett. 167 (1999) 1–14. [52] P. Allard, Geochimie isotopique et origine de l'eau, du carbone et du soufre dans les gaz volcaniques: Zones de rift, marges continentales et arcs insulaires, PhD Thesis, Paris 7 Univ. (1986) pp. 340. [53] R. Moretti, P. Papale, On the oxidation state and volatile behavior in multi-component gas phase equilibria, Chem. Geol. 213 (1–3) (2004) 265–280. [54] P.J. Jugo, R.W. Luth, J.P. Richards, Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts, Geochim. Cosmochim. Acta 69 (2005) 497–503. [55] N. Métrich, R. Clocchiatti, Sulfur abundance and its speciation in oxidized alkaline melts, Geochim. Cosmochim. Acta 60 (1996) 4151–4160. [56] N. Métrich, M. Bonnin-Mosbah, J. Susini, B. Menez, L. Galoisy, Presence of sulphite (SIV) in magmas: implications for volcanic sulphur emissions, Geophys. Res. Lett. 29/11 (2002) 33/1–33/4. [57] J.G. Schilling, M.B. Bergeron, R. Evans, Halogens in the mantle beneath the North Atlantic, R. Soc. Phil. Trans., A 297 (1980) 147–178. [58] T.M. Gerlach, E.J. Graeber, Volatile budget of Kilauea volcano, Nature 313 (1985) 273–277. [59] J.E. Gardner, A. Burgisser,M. Hort, M. Rutherford, Experimental and model constraints on degassing of magma during ascent and eruption, in: C. Siebe, J.L Macias, G.J. Aguirre-Diaz (Eds.), Neogene–Quaternary Continental Margin Volcanism: A Perspective from Mexico: Geol. Soc. Amer. Spec. Paper 402, Penrose Conf. Series, 2006, pp. 99–113, doi:10.1130/2006.2402(04). [60] A. Jambon, Earth degassing and large-scale geochemical cycling of volatile elements, in: M.R. Carroll, J.R. Holloway (Eds.), Volatiles in Magmas, vol. 30, Mineral. Soc. Amer., Washington, DC, 1994, pp. 479–509. [61] H. Bureau, H. Keppler, N. Metrich, Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry, Earth Planet. Sci. Lett. 183 (2000) 51–60. [62] E. Lo Giudice, R. Rasa, Very shallow earthquake and brittle deformation in active volcanic areas: the Etnean region as an example, Tectonophysics 202 (1992) 257–268. [63] C. Klug, K.V. Cashman, Permeability development in vesiculating- magmas: implications for fragmentation, Bull. Volcanol. 58 (1996) 87–100. [64] J. Blower, Factors controlling permeability–porosity relationships in magma, Bull. Volcanol. 63 (2001) 497–504. [65] M. Burton, H. Mader, M. Polacci, P. Allard, Constraints on the dynamics of degassing in basaltic systems, Eos, Trans. - AGU 86 (52) (2005) (Fall Meet. Suppl., Abstract V13G-01. [66] R.S.J. Sparks, The dynamics of bubble formation and growth in magma: a review and analysis, J. Volcanol. Geotherm. Res. 3 (1978) 1–37. [67] K. Kazahaya, H. Shinohara, G. Saito, Excessive degassing of Izu–Oshima volcano: magma convection in a conduit, Bull. Volcanol. 56 (1994) 207–216. [68] H.J. Rymer, C.A. Locke, J.B. Murray, Magma movement in Etna volcano associated with the major 1991–1993 lava eruption: evidence from gravity and deformation, Bull. Volcanol. 57 (1995) 451–461.en
dc.description.fulltextreserveden
dc.contributor.authorSpilliaert, N.en
dc.contributor.authorMétrich, M.en
dc.contributor.authorAllard, P.en
dc.contributor.departmentLaboratoire Pierre Süe, CEA–CNRS, CE-Saclay, 91191 Gif sur Yvette, Franceen
dc.contributor.departmentLaboratoire Pierre Süe, CEA–CNRS, CE-Saclay, 91191 Gif sur Yvette, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLaboratoire Pierre Su¨e, CNRS-CEA, Saclay, France.-
crisitem.author.deptLaboratoire Pierre Sue, CNRS-CEA, CE-Saclay, 91191 Gif sur Yvette, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-7836-3117-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1144.pdf647.58 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

123
checked on Feb 10, 2021

Page view(s) 50

198
checked on Mar 27, 2024

Download(s)

31
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric