Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2230
DC FieldValueLanguage
dc.contributor.authorallAiuppa, A.; Dipartimento CFTA, Università di Palermo, Italyen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBrusca, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallD'Alessandro, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFederico, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallGinevra, W.; Dipartimento CFTA, Università di Palermo, Italyen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallLongo, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallPecoraino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallValenza, M.; Dipartimento CFTA, Università di Palermo, Italyen
dc.date.accessioned2007-07-03T07:56:33Zen
dc.date.available2007-07-03T07:56:33Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2230en
dc.description.abstractThis paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l−1 and from 2.6 to 3800 μg·l−1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwatersbsteam-heated groundwatersbNaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water–rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite+pyrite+pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.en
dc.format.extent1251413 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/229 (2006)en
dc.subjectArsenic geochemistryen
dc.subjectHydrothermal systemsen
dc.subjectWater–rock interactionen
dc.subjectHydrogeochemistryen
dc.subjectArsenopyriteen
dc.titleMineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber313–330en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.identifier.doi10.1016/j.chemgeo.2005.11.004en
dc.relation.referencesAiuppa, A., Allard, P., D'Alessandro, W., Michel, A., Parello, F., Treuil, M., Valenza, M., 2000. Mobility and fluxes of major, minor and trace metals during basalt weathering at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 64, 1827–1841. Aiuppa, A., D'Alessandro,W., Federico, C., Palumbo, B., Valenza, M., 2003. The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy. Appl. Geochem. 18, 1283–1296. Aiuppa, A., Federico, C., Allard, P., Gurrieri, S., Valenza, M., 2005. Trace metal modelling of groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chem. Geol. 2163-4, 289–311. Allard, P., Maiorani, A., Tedesco, D., Cortecci, G., Turi, B., 1991. Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 48, 139–159. Ballantyne, J.M., Moore, J.N., 1988. Arsenic geochemistry in geothermal systems. Geochim. Cosmochim. Acta 52, 475–483. Ball, J.W., McCleskey, R.B., Nordstrom, D.K., Holloway, J.M., Verplanck, P.L., 2002. Water-chemistry data for selected springs, geysers, and streams in yellowstone national Park, Wyoming, 1999–2000. Open-File Rep. U.S. Geolo. Surv. 02-382 (112 pp.). Barberi, F., Hill, D.P., Innocenti, F., Luongo, G., Treuil, M. (Eds.), 1984. The 1982–1984 Bradyseismic Crisis at Phlegrean Fields- Bull. Volcanol. Special Issue, vol. 74. Barnes, H.L. (Ed.), 1997. Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons. Barton Jr., P.B., Skinner, B.J., 1979. Sulfide mineral stabilities, In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, second edition. John Wiley & Sons, New York, pp. 278–403. Brondi, M., Dall'Aglio, M., Ghiara, E., 1986. Elementi in traccia di interesse geochimico e tossicologico nei fluidi termali e geotermici dei Campi Flegrei e di Larderello. Acqua Aria 10, 1103–1111. Caliro, S., Panichi, C., Stanzione, D., 1999. Variation in the total dissolved carbon isotope composition of thermal waters of the Island of Ischia (Italy) and its implications for volcanic surveillance. J. Volcanol. Geotherm. Res. 90, 219–240. Caprarelli, G., Tsutsumi, M., Turi, B., 1997. Chemical and isotopic signature of the basement rocks from the Campi Flegrei geothermal field (Naples, southern Italy): inferences about the origin and evolution of its hydrothermal fluids. J. Volcanol. Geotherm. Res. 76, 63–82. Celico, P., Dall'Aglio, M., Ghiara, M.R., Stanzione, D., Brondi, M., Prosperi, M., 1992. Geochemical monitoring of the thermal fluids in the Phlegrean Fields from 1970 to 1990. Boll. Soc. Geol. Ital. 111, 409–422. Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O– H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Chiodini, G., Comodi, P., Giaquinto, S., 1988. Ammonia and boric acid in steam and water. Experimental data from geothermal wells in the Phlegrean Fields, Naples, Italy. Geothermics 17, 711–718. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res. 106 (B8), 16213–16221. Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., Russo, M., 2003. Magma degassing as a trigger of bradyseismic events: the case of the Phlegrean Fields (Italy). Geophys. Res. Lett. 30 (8), 1434, doi:10.1029/2002GL016790. Chiodini, G., Avino, R., Brombach, T., Caliro, S., Cardellini, C., De Vita, S., Frondini, F., Granieri, D., Marotta, E., Ventura, G., 2004. Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 133, 291–309. Cidu, R., Fanfani, L., Lattanzi, P. (Eds.), 2003. Arsenic GeochemistryAppl. Geochem. Spec., pp. 18–19. Cioni, R., Corazza, E., Marini, L., 1984. Gas steam ratio as an indicator of heat transfer at Solfatara fumaroles, Phlegrean Fields (Italy). Bull. Volcanol. 47, 295–302. Cleverley, J.S., Benning, L.G., Moutain, B.W., 2003. Reaction path in the As–S system: a case study for geothermal As transport. Appl. Geochem. 18, 1325–1345. Criaud, A., Fouillac, C., 1989. The distribution of arsenic(III) and arsenic(V) in geothermal waters: examples from the Massif Central of France, the island of Dominica in the Leeward Islands of the Caribbean, the Valles Caldera of New Mexico, USA, and southwest Bulgaria. Chem. Geol. 76, 259–269. D'Amore, F., Panichi, C., 1980. Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochim. Cosmochim. Acta 44, 549–556. De Gennaro, M., Ferreri, M., Ghiara, M.R., Stanzione, D., 1984. Geochemistry of thermal waters on the Island of Ischia. (Campania, Italy). Geothermics 13, 361–374. De Vivo, B., Belkin, H.E., Barbieri, M., Chelini, W., Lattanzi, P., Lima, A., Tolomeo, L., 1989. The Campi Flegrei (Italy) geothermal system: a fluid inclusion study of the Mofete and San Vito fields. J. Volcanol. Geotherm. Res. 36, 303–326. Ellis, A.J., Mahon,W.A.J., 1977. Chemistry and Geothermal Systems. Academic Press, New York. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Michel, A., Parello, F., Valenza, M., 2002. Magmatic gas–water interactions at Vesuvius volcano: major, minor and trace element composition of the volcanic aquifer. Geochim. Cosmochim. Acta 66, 963–981. Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2763. Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. In: D'Amore, F. (Ed.), Applications of Geochemistry in Geothermal Reservoir Development. UNITAR/UNDP, pp. 119–144. Gillot, P.Y., Chiesa, S., Pasquarè, G., Vezzoli, L., 1982. b33,000 yr K– Ar dating of the volcano-tectonic horst of the isle of Ischia, Gulf of Naples. Nature 229, 242–244. Goff, F., Janik, C.J., 2000. Geothermal systems. In: Sugurdsson, H. (Ed.), Encyclopaedia of Volcanoes. Academic Press. Guglielminetti, M., 1986. Mofete geothermal fields. Geothermics 15, 781–790. Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527. Heinrich, C.A., Eadington, P.E., 1986. Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenic sequence of some cassirite-arsenopyrite-base metal sulphide deposits. Econ. Geol. 81, 511–529. Henley, R.W., Truesdell, A.H., Barton, P.B., 1984. Fluid mineral equilibria in hydrothermal systems. Rev. Econ. Geol. 1 (Society of Economic Geology). Hockstein, M.P., Browne, P.R.L., 2000. Surface manifestations of geothermal systems with volcanic heat sources. In: Sugurdsson, H. (Ed.), Encyclopaedia of Volcanoes. Academic Press. Kretschmar, U., Scott, SD., 1976. Phase relations involving arsenopyrite in the system Fe–As–S and their application. Can. Mineral. 14, 364–386. Inguaggiato, S., Pecoraino, G., D'Amore, F., 2000. Chemical and isotopic characterisation of fluid manifestations of Ischia Island. J. Volcanol. Geotherm. Res. 99, 151–178. Lima, A., Cicchella, D., Di Francia, S., 2003. Natural contribution of harmful elements in thermal groundwaters of Ischia Island (Southern Italy). Environ. Geol. 43, 930–940. Maest, A.S., Pasilis, S.P., Miller, L.G., Nordstrom, D.K., 1992. Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In: Kharaka, Y.K., Maest, A.S. (Eds.), Proc. 7th Internat. Symp. Water–Rock Interaction. A.A. Balkema, Rotterdam, pp. 507–511. Martini, M., Giannini, L., Buccianti, A., Prati, F., Cellini Legittimo, P., Bozzelli, P., Capaccioni, B., 1991. 1980–1990: ten years of geochemical investigations at Phlegrean Fields (Italy). J. Volcanol. Geotherm. Res. 48, 161–171. Molin, P., Acocella, V., Funicello, R., 2003. Structural, seismic and hydrothermal features at the border of an active intermittent resurgent block: Ischia Island (Italy). J. Volcanol. Geotherm. Res. 121, 65–81. Nicholson, K., 1993. Geothermal fluids. Chemistry and Exploration Techniques. Springer Verlag. Nimick, D.A., Moore, J.N., Dalby, C.E., Savka, M.W., 1998. The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resour. Res. 34, 3051–3067. Nordstrom, D.K., 2000. Thermodynamic properties of environmental arsenic species: limitations and needs. In: Young, C. (Ed.), Minor Elements 2000, Processing and Environmental Aspects of As, Sb, Se, Te, and Bi. Society for Mining, Metallurgy, and Exploration, pp. 325–331. Nordstrom, D.K., 2002. Worldwide occurrences of arsenic in ground water. Science 296, 2143–2145. Nriagu, J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49. Orsi, G., De Vita, S., Di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Panichi, C., Volpi, G., 1999. Hydrogen, oxygen and carbon isotope ratios of Solfatara fumaroles (Phlegrean Fields, Italy): further insights into source processes. J. Volcanol. Geotherm. Res. 91, 321–328. Panichi, C., Bolognesi, L., Ghiara, M.R., Noto, P., Stanzione, D., 1992. Geothermal assessment of the island of Ischia (southern Italy) from isotopic and chemical composition of the delivered fluids. J. Volcanol. Geotherm. Res. 49, 329–348. Pokrovski, G., Gout, R., Shott, J., Zotov, A., Harrichoury, J.-C., 1996. Thermodynamic properties and stechiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta. 60, 737–749. Robinson, B., Outred, H., Brooks, R., Kirkman, J., 1995. The distribution and fate of arsenic in theWaikato River System, North Island, New Zealand. Chem. Speciat. Bioavailab. 7, 89–96. Rosi, M., Sbrana, A. (Eds.), 1987. Phlegrean Fields. Quaderni della Ricerca Scientifica, vol. 114. CNR, Rome, Italy. Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568. Thompson, J.M., Keith, T.E.C., Consul, J.J., 1985. Water chemistry and mineralogy of Morgan and Growler hot springs, Lassen KGRA, California. Transactions of the Geothermal Research Council, vol. 9, pp. 357–362. Valentino, G.M., Stanzione, D., 2003. Source processes of the thermal waters from the Phlegrean Fields (Naples, Italy) by means of the study of selected minor and trace element distribution. Chem. Geol. 194, 245–274. Valentino, G.M., Stanzione, D., 2004. Geochemical monitoring of the thermal waters of the Phlegrean Fields. J. Volcanol. Geotherm. Res. 133, 261–289. Valentino, G.M., Cortecci, G., Franco, E., Stanzione, D., 1999. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy. J. Volcanol. Geotherm. Res. 91, 329–344. Vaughan, D.J., Craig, J.R., 1997. Sulfide ore mineral stabilities, morphologies, and inter-growth textures. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons. Vezzoli, L., 1988. Island of Ischia. Quaderni della Ricerca Scientifica, vol. 114. CNR, Rome. 133 pp. Webster, J.G., Nordstrom, D.K., 2003. Geothermal arsenic. In: Welch, A.H., Stollenwerk, K.G. (Eds.), Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers, Boston. Welch, A.H., Lico, M.S., Hughes, J.L., 1988. Arsenic in groundwaters of the Western United States. Ground Water 26, 333–347. Welch, A.H., Westjohn, D.B., Helsel, D.R., Wanty, R.B., 2000. Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water 38, 589–604. WHO, 1993. Guidelines for drinking-water quality, Volume 1: Recommendations, 2nd ed. World Health Organisation, Geneva. WHO, 2001. Environmental Health Criteria 224: Arsenic Compounds, 2nd edition. World Health Organisation, Geneva. Wilkie, J.A., Hering, J.G., 1998. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ. Sci. Technol. 32, 657–662. Wolery, T.J., 1992. EQ3NR, A computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user's guide and related documentation (version 7.0). Report UCRl-MA-110662 PT III. Lawrence Livermore National Laboratory, Livermore, California. Wolery, T.J., 1994. EQ3NR, Letter Report: EQ3/6 Version 8.0. Differences from Version 7. UCRL-ID-129749. Lawrence Livermore National Laboratory, Livermore, California. Yokoyama, T., Takahashi, Y., Tarutani, T., 1993. Simultaneous determination of arsenic and arsenious acids in geothermal water. Chem. Geol. 103, 103–111.en
dc.description.fulltextreserveden
dc.contributor.authorAiuppa, A.en
dc.contributor.authorAvino, R.en
dc.contributor.authorBrusca, L.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorD'Alessandro, W.en
dc.contributor.authorFavara, R.en
dc.contributor.authorFederico, C.en
dc.contributor.authorGinevra, W.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorLongo, M.en
dc.contributor.authorPecoraino, G.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentDipartimento CFTA, Università di Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento CFTA, Università di Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento CFTA, Università di Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDipartimento CFTA, Università di Palermo, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.orcid0000-0002-6570-9673-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0003-1724-0388-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.orcid0000-0002-9465-2653-
crisitem.author.orcid0000-0001-5478-1912-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
625.pdf1.22 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

83
checked on Feb 10, 2021

Page view(s) 50

281
checked on Apr 17, 2024

Download(s)

39
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric