Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2228
DC FieldValueLanguage
dc.contributor.authorallGiampiccolo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallTuvè, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGresta, S.; Dipartimento di Scienze Geologiche, Universit`a di Cataniaen
dc.contributor.authorallPatanè, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-07-03T07:55:02Zen
dc.date.available2007-07-03T07:55:02Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2228en
dc.description.abstractearthquake source parameters in a given region requires a good knowledge of attenuation and properties of the medium. Especially, information on high-frequency seismicwave attenuation in the lithosphere is of particular interest (Yoshimoto et al. 1993). In southeastern Sicily, the attenuation of seismicwaves has been studied by using different data set and methods (e.g. Castro et al. 1993; Giampiccolo et al. 2002, 2003, 2004; de Lorenzo et al. 2004). Castro et al. (1993) first obtained a frequency-dependent quality factor of coda waves (QC) and calculated the average attenuation law for the area. Giampiccolo et al. (2002, 2004) investigated in more detail both the frequency and lapse time dependence of QC by using different data sets. Their results show a good agreement with those obtained by Castro et al. (1993). Moreover, a clear increase of QC with lapse time and, therefore, with depth was observed. Giampiccolo et al. (2003) and de Lorenzo et al. (2004) estimated the quality factor of P-waves (QP) by applying the pulse-broadening method (Wu & Lees 1996) whereas Giampiccolo et al. (2003) estimated the attenuation of S waves (Q−1 S ) by applying the frequency decay method (see Bianco et al. 1999) in the low- (below the corner frequency) and high- (above the corner frequency and below the cut-off filter) frequency ranges. The obtained results suggested that attenuation at higher frequencies is less pronounced than at lower ones. However, the detailed frequency-dependent nature of QP and QS was not resolved yet by the above quoted studies. It isworth stressing that attenuation estimated from direct S waves contains the combined effects of scattering and intrinsic loss. Scattering attenuation is described by the quality factor Q−1 s and is due to the presence of inhomogeneities. Therefore, it depends on the spatial structure of the heterogeneities in the medium and on the size of the velocity and density fluctuations. Intrinsic absorption Q−1 i is caused by the anelasticity of the medium and depends on viscous processes between the rock matrix and liquid inclusions, such as pore fluids, and on movements of dislocations through the mineral grains (Goric & Muller 1987). Quantifying the relative contribution of scattering and intrinsic attenuation has been a subject of considerable interest among seismologists and different methods have been developed (e.g. Wu 1985; Hoshiba et al. 1991; Wennerberg 1993). In the present paper we will estimate the quality factor of S waves (QS) in the lithosphere beneath southeastern Sicily and clarify its frequency dependence by means of the coda-normalization method (Aki 1980), applied in the frequency range 1.5–15 Hz.We will also obtain a separate estimate of intrinsic and scattering attenuation by applying the multiple lapse time window analysis (MLTWA) technique by Hoshiba et al. (1991). This method gives information about the temporal change of seismic energy during a wave’s propagation by considering the energy in multiple consecutive time windows as a function of the hypocentral distance. Under the assumptions of multiple and isotropic scattering and uniformdistribution of scatterers, two attenuation parameters will be calculated: the seismic albedo B0, defined as the dimensionless ratio of the scattering loss to total attenuation (B0 = Q−1 s /Q−1 T ) and the inverse of the extinction length L−1 e that is the inverse of the distance (in kilometres) over which the primary S-wave energy is decreased by e−1. B0 ranges between 0 and 1 and was proposed byWu (1985) to describe the proportions of energy loss dominated by intrinsic attenuation (B0 < 0.5) or scattering attenuation (B0 > 0.5). The estimated scattering (Q−1 s ) and intrinsic (Q−1 i ) attenuation mechanisms in the frequency range 1.5–15 Hz will be discussed and compared with previous results obtained by Giampiccolo et al. (2004). Estimates of total attenuation Q−1 T will be compared with the coda-Q values (QCobs) obtained by Giampiccolo et al. (2004) with the expected coda-Q (QCexp) calculated in this study by using Hoshiba (1991) relationship. Finally, since the MLTWA technique has been widely applied to several areas in the world (e.g. Mayeda et al. 1992; Hoshiba 1993; Akinci et al. 1995; Pujades et al. 1997; Akinci & Eydo˘gan 2000; Bianco et al. 2002; Ugalde et al. 2002; Bianco et al. 2005), differences and analogies observed among southeastern Sicily and other tectonic settings will be discussed.en
dc.format.extent2190970 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofGeophys. J. Int.en
dc.relation.ispartofseries/165 (2006)en
dc.subjectabsorptionen
dc.subjectattenuationen
dc.subjectcoda-normalization methoden
dc.subjectmultiple lapse time window analysis (MLTWA)en
dc.subjectscatteringen
dc.subjectsoutheastern Sicilyen
dc.titleS-waves attenuation and separation of scattering and intrinsic absorption of seismic energy in southeastern Sicily (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber211-222en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1111/j.1365-246X.2006.02881.xen
dc.relation.referencesAdam, J., Grasso, M., Reuther, M. & Torelli, L., 2000. Neotectonic stress analysis and active fault kinematics along the Ionian margin of the Hyblean Plateau (Augusta peninsula and adjacent areas,SESicily), Tectonophysics, 326, 217–239. Aki, K., 1980. Scattering and attenuation of shear waves in the lithosphere, J. geophys. Res., 85, 6496–6504. Aki, K. & Chouet, B.A., 1975. Origin of coda waves: Source, attenuation and scattering effects, J. geophys. Res., 80, 3322–3342. Akinci, A. & Eydo˘gan, H., 2000. Scattering and anelastic attenuation of seismic energy in the vicinity of north Anatolian fault zone, easternTurkey, Phys. Earth planet. Int., 122, 229–239. Akinci, A., Del Pezzo, E. & Iba˜nez, M.J., 1995. Separation of scattering and intrinsic attenuation in Southern Spain and Western Anatolia (Turkey), Geophys. J. Int., 121, 337–353. Amato, A., Azzara, R., Basili, A., Chiarabba, C., Cocco, M., Di Bona, M. & Selvaggi, G., 1995. Main shock and aftershocks of the December 13, 1990, Eastern Sicily earthquake, Ann. Geofis, 38, 255– 266. Azzaro, R. & Barbano, M.S., 2000. Analysis of the seismicity of southeastern Sicily: a proposed tectonic interpretation, Ann. Geofis., 43, 171– 188. Bianchi, F., Carbone, S., Grasso, M., Invernizzi, G., Lentini, F., Longaretti, G., Merlini, S. & Moscardini, F., 1987. Sicilia orientale: profilo geologico Nebrodi-Iblei, Mem. Soc. Geol. It., 38, 429–458 (in italian). Bianca, M., Monaco, C., Tortorici, L. & Cernobori, L., 1999. Quaternary normal faulting in southeastern Sicily (Italy): a seismic source for the 1693 large earthquake, Geophys. J. Int., 139, 370–394. Bianco, F., Castellano, M., Del Pezzo, E. & Iba˜nez, M.J., 1999. Attenuation of short period seismic waves at Mt. Vesuvius, Italy, Geophys. J. Int., 138, 67–76. Bianco, F., Del Pezzo, E., Castellano, M., Iba˜nez, M.J.&Di Luccio, F., 2002. Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone Italy, Geophys. J. Int., 150, 10–22. Bianco, F., Del Pezzo, E., Malagnini, L., Di Luccio, F. & Akinci, A., 2005. Separation of depth-dependent intrinsic and scattering seismic attenuation in the northeastern sector of the Italian Peninsula, Geophys. J. Int., 161, doi: 10.1111/j.1365–246X.2005.02555.x. Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G. & Gasperini, P., 1997. Catalogo dei Forti Terremoti dal 461 a.c. al 1990, Istituto Nazionale di Geofisica and SGA, Ozzano Emilia, p. 644 (in italian). Canas, J.A., Ugalde, A., Pujades, L.G., Carracedo, J.C., Soler, V. & Blanco, M.J., 1998. Intrinsic and scattering seismicwave propagation in the Canary Islands, J. geophys. Res., 103, 15 037–15 050. Castro, R.R., Pacor, F. & Petrungaro, C., 1993. Confronto fra diversi metodi per la stima dell’attenuazione delle onde sismiche applicati nelle regioni Lombardia e Sicilia, Proc. 12◦ Conf. GNGTS, Roma, 1, 179–192 (in italian). Chung, T.W. & Sato H., 2001. Attenuation of high-frequency P and S waves in the crust of southeastern South Korea, Bull. seism. Soc. Am., 91, 1867– 1874. de Lorenzo, S., Di Grazia, G., Giampiccolo, E., Gresta, S., Langer, H., Tusa, G. & Ursino, A., 2004. Source and Qp parameters from pulse width inversion of microearthquake data in southeastern Sicily, Italy, J. geophys. Res., 109, B07308, doi:10.1029/2003JB002577. Del Pezzo, E., Simini, M. & Iba˜nez, J.M., 1996. Separation of intrinsic and Q for volcanic areas: a comparison between Etna and Campi Flegrei, J. Volc. Geotherm. Res., 70, 213–219. Di Grazia, G., Langer, H., Ursino, A., Scarf`ı, L. & Gresta, S., 2001. On the estimate of the earthquake magnitude at a local seismic network, Ann. Geofis., 44, 579–591. Fehler, M., Hoshiba, M., Sato, H.&Obara, K., 1992. Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, using measurements of S-wave energy versus hypocentral distance, Geophys. J. Int., 108, 787– 800. Frankel, A.A., 1991. Mechanisms of seismic attenuation in the crust: scattering and anelasticity in New York State, South Africa and Southern California, J. geophys. Res., 96, 6269–6289. Frankel, A. & Wennerberg, L., 1987. Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation, Bull. seism. Soc. Am., 77, 1223–1251. Giampiccolo, E., Tusa, G., Langer, H. & Gresta, S., 2002. Attenuation in southeastern Sicily (Italy) by applying different coda methods, J. Seismol., 6, 487–501. Giampiccolo, E., Gresta, S. & Ganci, G., 2003. Attenuation of body waves in southeastern Sicily (Italy), Phys. Earth planet. Int., 135, 267–279. Giampiccolo, E., Gresta, S. & Rascon`a, F., 2004. Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily (Italy), Phys. Earth planet. Int., 145, 55–66. Goric, M. & Muller, G., 1987. Apparent and intrinsic Q. The onedimensional case, J. geophys. Res., 61, 46–54. Goutbeek, F.H., Dost, B. & van Eck, T., 2004. Intrinsic absorption and scattering attenuation in the southern part of the Netherlands, J. Seismol., 8, 11–23. Hatzidimitriou, P.M., 1995. S-wave attenuation in the Crust in Northern Greece, Bull. seism. Soc. Am., 85, 1381–1387. Horasan G. & Boztepe-Guney, A., 2004. S-wave attenuation in the Sea of Marmara, Turkey, Phys. Earth planet. Int., 142, 215–224. Hoshiba, M., 1991. Simulation of multiple-scattered coda wave excitation based on the energy conservation law, Phys. Earth planet. Int., 67, 123– 136. Hoshiba, M., 1993. Separation of scattering and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope, J. geophys. Res., 98, 15 809–15 824. Hoshiba, M., 1997. Seismic coda wave envelope in depth dependent S wave velocity structure, Phys. Earth planet. Int., 104, 15–22. Hoshiba, M., Sato, H. & Fehler, M., 1991. Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope—a Monte Carlo simulation of multiple isotropic scattering, Papers in Meteorology and Geophysics, 42, 65–91. Hoshiba, M., Rietbrock, A., Scherbaum, F., Nakahara, H. & Haberland, C., 2001. Scattering attenuation and intrinsic absorption using uniform and depth dependent model—application to full seismogram envelope recorded in Northern Chile, J. Seismol., 5, 157–179. Jin, A., Mayeda, K., Adams, D. & Aki, K., 1994. Separation of intrinsic and scattering attenuation in southern California using TERRAscope data, J. geophys. Res., 99, 17 835–17 848. Margerin, L., Campillo, M., Shapiro, N.M. & van Tiggelen, B., 1999. Residence time of diffusive waves in the crust as a physical interpretation of coda Q: application to sesmograms recorded in Mexico, Geophys. J. Int., 138, 343–352. Matsunami, K., 1991. Laboratory tests of excitation and attenuation of coda waves using 2-D models of scattering media, Phys. Earth planet. Int., 67, 36–47. Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K. & Zeng, Y., 1992. A comparative study of scattering, intrinsic, and coda Q−1 for Hawaii, Long Valley, and central California between 1.5 and 15.0 hz, J. geophys. Res., 97, 6643–6659. Monaco, C., Tapponnier, P., Tortrici, L. & Gillot P. Y., 1997. Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth planet Sci. Lett., 147, 125– 139. Musumeci, C., Di Grazia, G. & Gresta, S., 2003. Minimum 1-D velocity model in southeastern Sicily (Italy) from local earthquake data: an improvement in location accuracy, J. Seismol., 7, 469–478. Musumeci, C., Patan`e, D., Scarf`ı, L. & Gresta, S., 2005. Stress directions and shear wave anisotropy: observations from local earthquakes in Southeastern Sicily (Italy), Bull. seism. Soc. Am., 95, 1359–1374. Pujades, L.G., Ugalde, A., Canas, J.A., Navarro, M., Badal, F.J. & Corchete, V., 1997. Intrinsic and scattering attenuation from observed seismic codas in the Almeria Basin (southeastern Iberian Peninsula), Geophys. J. Int., 129, 281–291. Reuther, C., Ben-Avraham, Z.&Grasso, M., 1993. Origin and role of the major strike-slip transfer during plate collision in the central Mediterranean, TerraNova, 5, 249–257. Scandone, P. et al., 1981. Mesozoic and Cenozoic rocks from Malta Escarpment (Central Mediterranean), Am. Assoc. Petrol. Geol. Bull., 65, 1299–1319. Scarf`ı, L., Giampiccolo, E., Musumeci, C. & Patan`e, D., 2005. Earthquake locations and three-dimensional crustal structure in southeastern Sicily (Italy), Geophysical Research Abstracts, 7, 06580. Tortorici, L., Monaco, C., Tansi, C. & Cocina, O., 1995. Recent and active tectonics in the Calabrian Arc (Southern Italy), Tectonophysics, 243, 37– 55. Tuv`e, T., Bianco, F., Patan`e, D. & Bottari, A., 2004. Separation of intrinsic absorption and scattering attenuation in the Straits of Messina, Italy, Geophysical Research Abstracts, 6, 00675. Ugalde, A., Pujades, L.G., Canas, J.A. & Villasenor, A., 1998. Estimation of the intrinsic absorption and scattering attenuation in northeasternVenezuela (south-eastern Caribbean) using codawaves, Pure appl. Geophys., 153, 685–702. Ugalde, A., Vargas, C.A., Pujades, L.G. & Canas, J.A., 2002. Seismic coda attenuation after the Mw = 6.2 Armenia (Colombia) earthquake of 25 January 1999, J. geophys. Res., 107(B6), doi:10.1029/2001JB000197. Wennerberg, L., 1993. Multiple-scattering interpretation of coda-Q measurements, Bull. seism. Soc. Am., 83, 279–290. Wu, R.S., 1985. Multiple scattering and energy transfer of seismic waves, separation of scattering effect from intrinsic attenuation, I, theoretical modelling, Geophys. J.R. astr. Soc., 82, 57–80. Wu,H.&Lees, J.M., 1996. Attenuation of Coso geothermal area, California, from wave pulse width, Bull. seism. Soc. Am., 5, 1574–1590. Yoshimoto, K., Sato, H. & Ohteka, M., 1993. Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the codanormalization method. Geophys. J. Int., 114, 165–174. Zeng, Y., 1991. Compact solutions for multiple scattered wave energy in time domain, Bull. seism. Soc. Am., 81, 1022–1029. Zeng, Y., Su, F. & Aki, K., 1991. Scattering wave energy propagation in a random isotropic scattering medium I, Theory, J. geophys. Res., 96, 607–619.en
dc.description.fulltextreserveden
dc.contributor.authorGiampiccolo, E.en
dc.contributor.authorTuvè, T.en
dc.contributor.authorGresta, S.en
dc.contributor.authorPatanè, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Universit`a di Cataniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversità di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-5203-7436-
crisitem.author.orcid0000-0003-4111-8008-
crisitem.author.orcid0000-0001-9410-5126-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
556.pdf2.14 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

43
checked on Feb 7, 2021

Page view(s) 50

279
checked on Apr 24, 2024

Download(s)

52
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric