Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2225
DC FieldValueLanguage
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCorrado, G.; Dipartimento di Geofisica e Vulcanologia, Universita` "Federico II" di Napoli, L.go S. Marcellino, 10-80138 Naples, Italyen
dc.contributor.authorallRiccardi, U.; Dipartimento di Geofisica e Vulcanologia, Universita` "Federico II" di Napoli, L.go S. Marcellino, 10-80138 Naples, Italyen
dc.date.accessioned2007-07-03T07:53:17Zen
dc.date.available2007-07-03T07:53:17Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2225en
dc.description.abstractThe goal of this paper is to describe how continuous gravity measurements can improve the geophysical monitoring of a volcano. Here the experience of 15 yr in continuous gravity on Vesuvius is presented. A wide set of dynamic phenomena (i.e. geodynamics, seismicity, volcanic activity) can produce temporal gravity changes, with a spectrum varying from short (1–10 s) to longer (more than 1 yr) periods. An impending eruption, for instance, is generally associated with the ascent of magma producing changes in the density distribution at depth, and leading to ground deformation and gravity changes observed at surface. The amplitude of such gravity variations is often quite small, on the order of 10 9–10 8 g (10–102 nm/s2; 1–10 AGal), where g is the mean value of normal gravity (9.806 199 203 m/s2), so their detection requires instruments with high sensitivity and stability, providing high quality data. Natural, man-made and instrumental sources are present on the gravity records affecting the Signal to Noise Ratio. Such effects may hide the subtle volcanic signals. The main natural noise is due to ocean–atmosphere dynamics and seismic activity. New approaches to model the instrumental response of mechanical gravity sensors (based on the inter-comparison among superconducting, mechanical and absolute gravimeters) and to investigate the temporal trends of the instrumental sensitivity are proposed. In fact, variations of the calibration factors can be considered the main cause preventing the repeatability of highprecision gravity measurements and inducing phase and amplitude perturbations in recorded gravity signals. A modelling of the background gravity noise level was performed at the Vesuvius station. Moreover, the bfar fieldQ effects produced by large earthquakes on the gravity station have been also investigated. Finally, the time dependent behaviour of the tidal gravimetric factors, the non-stationary components of the gravity field detected at Vesuvius and the results of absolute and relative gravity measurements are interpreted in the framework of its present-day dynamics, mainly characterized by the low level of seismicity, small ground deformation, gravity changes and moderate gas emission.en
dc.format.extent562329 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/150 (2006)en
dc.subjectVesuviusen
dc.subjectgravityen
dc.subjectrecorden
dc.subjectvolcanic processesen
dc.titleOn the capability of recording gravity stations to detect signals coming from volcanic activity: the case of Vesuvius.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber270– 282en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.jvolgeores.2005.07.015en
dc.relation.referencesArnoso, J., Fernandez, J., Vieira, R., 2001. Interpretation of tidal gravity anomalies in Lanzarote, Canary Islands. J. Geodyn. 31, 341–354. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294, 1510–1512. Becker, M., Balestri, L., Bartell, L., Berrino, G., Bonvalot, S., Csapo` , G., Diament, M., d’Errico, V., Gagnon, C., Gerstenecker, C., Jousset, P., Kopaev, A., Liard, J., Marson, I., Meures, B., Nowak, I., Nakai, S., Rehren, F., Richter, B., Schnu¨ ll, M., Somerhausen, A., Spita, W., Szatmari, G., van Ruymbeke, M., Wenzel, H.G., Wilmes, H., Zucchi, M., Zu¨ rn, W., 1995. Microgravimetric measurements at the 1994 International Comparison of Absolute Gravimeters. Metrologia 32, 145–152. Becker, M., Berrino, G., Camacho, A.G., Falk, R., Francis, O., Friederich, J.E., Gagnon, C., Gerstenecker, C., La¨ufer, G., Liard, J., Meures, B., Navarro, F.-J., Nowak, I., Rehren, F., Riccardi, U., Richter, B., Schnu¨ ll, M., Stizza, D., van Ruymbeke, M., Vauterin, P., Wilmes, H., 2000. Results of relative gravimeter measurements at the ICAG97 intercomparison. Bureau Gravim. Int. Bull. d’Inf. N. 85, 61– 72. Berrino, G., 1995. Absolute gravimetry and gradiometry on active volcanoes of Southern Italy. Boll. Geofis. Teor. Appl. 37 (146), 131– 144. Berrino, G., 2000. Combined gravimetry in the observation of volcanic processes in Southern Italy. J. Geodyn. 30, 371– 388. Berrino, G., Riccardi, U., 2000. Non-stationary components of the gravity field at Mt. Vesuvius (Southern Italy): correlations with different aspects of its present-day dynamics. Comptes Rendus of 88th Journe´es Luxembourgeoises de Ge´odynamique (JLG) Munsbach, pp. 32– 37. Berrino, G., Riccardi, U., 2001. Gravity tide at Mt. Vesuvius (Southern Italy): correlations with different geophysical data and volcanological implications. J. Geodetic Soc. Jpn. 47 (1), 121– 127. Berrino, G., Riccardi, U., 2004. Far-field gravity and tilt signals by large earthquakes: real or instrumental effects? Pure Appl. Geophys. 161, 1379–1397. Berrino, G., Corrado, G., Luongo, G., Toro, B., 1984. Ground deformations and gravity changes accompanying the 1982 Pozzuoli uplift. Bull. Volcanol. 47 (2), 188–200. Berrino, G., Coppa, U., De Natale, G., Pingue, F., 1993a. Recent geophysical investigation at Somma–Vesuvius volcanic complex. J. Volcanol. Geotherm. Res. 53, 11 –26. Berrino, G., Ducarme, B., Magliulo, R., 1993b. Gravity tide and volcanic activity in Southern Italy. Proc. 128 National Meeting Gruppo Nazionale Geofisica della Terra Solida, pp. 997– 1001. Berrino, G., Corrado, G., Magliulo, R., Riccardi, U., 1997. Continuous record of the gravity changes at Mt. Vesuvius. Ann. Geofis. 40, 1019–1028. Berrino, G., Corrado, R., Riccardi, U., 1998. Sea gravity data in the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area. J. Volcanol. Geotherm. Res. 82, 139– 150. Berrino, G., Cerutti, G., Corrado, G., De Maria, P., Riccardi, U., 1999. Gravity studies on active Italian volcanoes: a comparison between absolute and relative gravimetry. Boll. Geofis. Teor. Appl. 40 (3–4), 497–510. Berrino, G., Corrado, G., Magliulo, R., Riccardi, U., 2000. Continuous gravity record at Mount Vesuvius: a tool to monitor its dynamics. Phys. Chem. Earth, Part A 25 (9–11), 713– 717. Bonvalot, S., Diament, M., Gabalda, G., 1998. Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones. Geophys. J. Int. 135, 470– 494. Brown, G.C., Rymer, H., Stevensonm, D., 1991. Volcano monitoring by microgravity and energy budget analysis. J. Geol. Soc. (Lond.) 148, 585–593. Bruno, P., Cippitelli, G., Rapolla, A., 1998. Seismic study of the Mesozoic carbonate basement around Mt. Somma–Vesuvius, Italy. J. Volcanol. Geotherm. Res. 84, 311 – 322. Budetta, G., Carbone, D., 1997. Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily. J. Volcanol. Geotherm. Res. 76, 199– 214. Cassano, E., La Torre, P., 1987. Geophysics. In: Santacroce, R. (Ed.), Somma–Vesuvius. Cons. Naz. delle Ricerche, Rome, Quad. Ric. Sci., vol. 114, pp. 11– 46. Cortini, M.R., Scandone, R., 1982. The feeling system of Vesuvius between 1754 and 1944. J. Volcanol. Geotherm. Res. 12, 393– 400. Crossley, D., Hinderer, J., 1995. Global Geodynamics Project— GGP. Cah. Cent. Eur. Ge´odyn. Se´ismol. 11, 244–271. Davis, P.M., 1981. Gravity and Earth tides measured on an active volcano, Mt Etna, Sicily. J. Volcanol. Geotherm. Res. 11, 213– 223. Dehant, V., 1987. Tidal parameters for an inelastic Earth. Phys. Earth Planet. Inter. 49, 97– 116. Di Maio, R., Mauriello, P., Patella, D., Petrillo, Z., Piscitelli, S., Siniscalchi, A., 1998. Electric and electromagnetic outline of the Mount Somma–Vesuvius structural setting. J. Volcanol. Geotherm. Res. 82, 219– 238. Eggers, A.A., 1987. Residual gravity changes and eruption magnitudes. J. Volcanol. Geotherm. Res. 33, 201– 216. Fedi, M., Florio, G., Rapolla, A., 1998. 2.5D modelling of Somma– Vesuvius structure by aeromagnetic data. J. Volcanol. Geotherm. Res. 82, 239– 247. Finetti, I., Morelli, C., 1974. Esplorazione sismica a riflessione nei golfi di Napoli e Pozzuoli. Boll. Geofis. Teor. Appl. 16, 175– 222. Goodkind, J.M., Young, C., 1991. Gravity and hydrology at Kilauea volcano, the Geysers and Miami. Cah. Cent. Eur. Ge´odyn. Se´ismol. 3, 163– 167. Hinderer, J., Crossley, D., 2000. Time variations and inferences on the Earth’s structure and dynamics. Surv. Geophys. 21, 1 –45. Hyppolite, J., Angelier, J., Roure, F., 1994. A major change revealed by Quaternary stress patterns in the Southern Apennines. Tectonophysics 230, 199– 210. Iannaccone, G., Alessio, G., Borriello, G., Cusano, P., Petrosino, S., Ricciolino, P., Talarico, G., Torello, V., 2001. Characteristics of the seismicity of Vesuvius and Campi Flegrei during the year 2000. Ann. Geofis. 44, 1075– 1091. Imbo` , G., Bonasia, V., Lo Bascio, A., 1964. Marea gravimetrica all’Osservatorio Vesuviano. Ann. Oss. Vesuv. 5 (S6), 161–184. Imbo` , G., Bonasia, V., Lo Bascio, A., 1965a. Variazioni della marea della crosta all’Osservatorio Vesuviano. Ann. Oss. Vesuv. 7 (S6), 181– 198. Imbo` , G., Casertano, L., Bonasia, V., 1965b. Considerazioni sismogravimetriche sulle manifestazioni vesuviane del Maggio 1964. Proc. XIV Convegno Nazionale Assoc. Geofis., 291–300. Lanari, R., De Natale, G., Berardino, P., Sansosti, E., Ricciardi, G.P., Borgstrom, S., Capuano, P., Pingue, F., Troise, C., 2002. Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano. Geophys. Res. 29. doi: 10.1029/ 2001GL014571. Peterson, J., 1993. Observations and modelling of seismic background noise. Open File Report, vol. 93-322. U.S. Department of Interior Geological Survey, Albuquerque, New Mexico. Principe, C., Rosi, M., Santacroce, R., Sbrana, A., 1987. Explanatory notes to the geological map. In: Santacroce, R. (Ed.), Somma–Vesuvius. Quad. Ric. Sci., vol. 114, pp. 11 –51. Riccardi, U., Berrino, G., Corrado, G., 2002. Changes in the instrumental sensitivity for same feedback equipping LaCoste and Romberg gravity meters. Metrologia 39, 509– 515. Rosi, M., Santacroce, R., Sheridan, M.F., 1987. Volcanic hazard in Somma–Vesuvius. Quad. Ric. Sci.Consiglio Nazionale delle Ricerche, Rome, pp. 197– 234. Santacroce, R., 1983. A general model for the behaviour of the Somma–Vesuvius volcanic complex. J. Volcanol. Geotherm. Res. 17, 237–248. Spratt, R.S., 1982. Modelling the effect of atmospheric pressure variations on gravity. Geophys. J. R. Astron. Soc. 71, 173– 186. Tamura, Y., 1987. A harmonic development of the tide-generating potential. Bull. Inf. Mare´es Terrestres, Bruxelles 99, 6813– 6855. Torge, W., 1989. Gravimetry. de Gruyter, Berlin. Tribalto, G., Maino, A., 1962. Rilevamento gravimetrico della zona circumvesuviana. Ann. Oss. Vesuv. 6 (S4), 134– 172. van Ruymbeke, M., 1991. New feedback electronics for LaCoste and Romberg gravimeters. Cah. Cent. Eur. Ge´odyn. Se´ismol. 4, 333– 337. van Ruymbeke, M., Vieira, R., d’Oreye, N., Somerhausen, A., Grammatika, N., 1995. Technological approach from Walferdange to Lanzarote: the EDAS concept. Proceedings 12th Int. Symp. on Earth Tides. Science Press, Beijing, China, pp. 53– 62. Vieira, R., van Ruymbeke, M., Ferna´ndez, J., Arnoso, J., de Toro, C., 1991. The Lanzarote underground laboratory. Cah. Cent. Eur. Ge´odyn. Se´ismol. 4, 71–86. Vilardo, G., De Natale, G., Milano, G., Coppa, U., 1996. The seismicity of Mt. Vesuvius. Tectonophysics 261, 127– 138. Wahr, J.M., 1981. Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astron. Soc. 64, 677– 703. Warburton, R.J., Goodkind, J.M., 1977. The influence of barometric- pressure variations on gravity. Geophys. J. R. Astron. Soc. 48, 281–292. Wenzel, H.G., 1996. The NanoGal Software: Earth Tide Data Processing Package ETERNA 3.30. Bullettin d’Informations Mare´es Terrestres, Bruxelles, pp. 9425– 9438. Yokoyama, I., 1989. Microgravity and height changes caused by volcanic activity: four Japanese examples. Bull. Volcanol. 51, 333– 345. Zollo, A., Gasparini, P., Virieux, J., Le Meur, H., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Mirabile, L., Vilardo, G., 1996. Seismic evidence for a low velocity zone in the upper crust beneath Mt. Vesuvius. Science 274, 592– 594. Zschau, J., Wang, R., 1987. Imperfect elasticity in the Earth’s mantle. Implication for Earth tides and long period deformation. Proc. of the 9th International Symposium on Earth Tides. New York, pp. 605– 629.en
dc.description.fulltextreserveden
dc.contributor.authorBerrino, G.en
dc.contributor.authorCorrado, G.en
dc.contributor.authorRiccardi, U.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Geofisica e Vulcanologia, Universita` "Federico II" di Napoli, L.go S. Marcellino, 10-80138 Naples, Italyen
dc.contributor.departmentDipartimento di Geofisica e Vulcanologia, Universita` "Federico II" di Napoli, L.go S. Marcellino, 10-80138 Naples, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità della Calabria-
crisitem.author.deptDipartimento di Scienze della Terra, Università “Federico II” di Napoli-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.author.orcid0000-0003-0720-5415-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
941.pdf549.15 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

15
checked on Feb 7, 2021

Page view(s) 50

179
checked on Apr 20, 2024

Download(s)

26
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric