Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2214
DC FieldValueLanguage
dc.contributor.authorallLodato, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSpampinato, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallHarris, A. J. L.; HIGP/SOEST, University of Hawai’i, Honolulu, HI, USAen
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDehn, J.; Alaska Volcano Observatory, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USAen
dc.contributor.authorallPatrick, M.; HIGP/SOEST, University of Hawai’i, Honolulu, HI, USAen
dc.date.accessioned2007-07-03T07:42:28Zen
dc.date.available2007-07-03T07:42:28Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/2214en
dc.description.abstractThe use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.en
dc.format.extent1287165 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameSpringeren
dc.relation.ispartofBull. Volcan.en
dc.relation.ispartofseries/ 69 (2007)en
dc.subjectLava flow fielden
dc.subjectMorphologyen
dc.subjectTumulien
dc.subjectLava tubesen
dc.subjectEffusion rateen
dc.subjectRheologyen
dc.subjectStromboli volcanoen
dc.titleThe morphology and evolution of the Stromboli 2002–2003 lava flow field: an example of a basaltic flow field emplaced on a steep slopeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1007/s00445-006-0101-6en
dc.relation.referencesBonaccorso A, Calvari S, Garfì G, Lodato L, Patané D (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30:1941. DOI 10.1029/ 2003GL017702 Borgia A, Linneman S, Spencer D, Morales LD, Andre JB (1983) Dynamics of lava flow fronts, Arenal volcano, Costa Rica. J Volcanol Geotherm Res 19:303–329 Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–93 eruption of Mount Etna. J Geophys Res 103:27291–27302 Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280 Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–93 Etna eruption: chronology and geological observations. Acta Vulcanol 4:1–15 Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton MR, Andronico D (2005) Complex volcanic processes observed with a hand-held thermal camera during the 2002–2003 flank eruption at Stromboli volcano (Italy). J Geophys Res 110: B02201. DOI 10.1029/2004JB003129 Calvari S, Spampinato L, Lodato L (2006) The 5th April 2003 vulcanian explosion at Stromboli reconstructed from visual observation and thermal data. J Volcanol Geotherm Res 149:160–175 Cigolini C, Borgia A, Casertano L (1984) Intra-crater activity, aablock lava, viscosity and flow dynamics: Arenal volcano, Costa Rica. J Volcanol Geotherm Res 20:155–176 De Fino M, La Volpe L, Falsaperla S, Frazzetta G, Neri G, Francalanci L, Rosi M, Sbrana A (1988) The Stromboli eruption of December 6, 1985–April 25, 1986: volcanological, petrological and seismological data. Rend Soc Ital Mineral Petrol 43:1021–1038 Duncan A M, Guest JE, Stofan ER, Anderson SW, Pinkerton H, Calvari S (2004) Development of tumuli in the medial portion of the 1983 aa flow-field, Mount Etna, Sicily. J Volcanol Geotherm Res 132:173–187. DOI 10.1016/S0377-0273(03)00344-5 Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270 Harris AJL, Dehn J, Patrick MR, Calvari S, Ripepe M, Lodato L (2005) Lava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bull Volcanol 68:107–117 Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Amer Bull 106:351–370 Kilburn CRJ, Guest JE (1994) Aa lavas of Mount Etna, Sicily. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 73–106 Kilburn CRJ, Lopes RMC (1988) The growth of aa lava flow fields on Mount Etna, Sicily. J Geophys Res 93:14759–14772 Kilburn CRJ, Lopes RMC (1991) General patterns of flow field growth: aa and blocky lavas. J Geophys Res 19:721–19732 Kokelaar BP, Romagnoli C (1995) Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy. Bull Volcanol 57:240–262 Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567 Lyell C (1858) On the structure of lavas which have consolidated on steep slopes; with remarks on the mode of origin of Mount Etna, and on the theory of “craters of elevation”. Philos Trans R Soc Lond 148:703–786 Mattox TN, Heliker C, Kauahikaua J, Hon K (1993) Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii. Bull Volcanol 55:407–413 Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56:343– 360 Pino NA, Ripepe M, Cimini GB (2004) The Stromboli volcano landslides of December 2002: A seismological description. Geophys Res Lett 31:L02605. DOI 10.1029/2003GL018385 Polacci M, Papale P (1997) The evolution of lava flows from ephemeral vents at Mount Etna: insights from vesicle distribution and morphological studies. J Volcanol Geotherm Res 76:1–17 Ripepe M, Marchetti E, Poggi P, Harris AJL, Fiaschi A, Ulivieri G (2004) Seismic, acoustic, and thermal network monitors the 2003 eruption of Stromboli Volcano. EOS Trans AGU 35:329–332 Ripepe M, Marchetti E, Ulivieri G, Harris AJL, Dehn J, Burton MR, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341– 344. DOI 10.1130/G21173.1 Rossi MJ, Gudmundsson A (1996) The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. J Volcanol Geotherm Res 72:291–308 Swanson DA (1973) Pahoehoe flows from the 1969–1971 Mauna Ulu eruption, Kilauea volcano, Hawaii. Geol Soc Amer Bull 84:615– 626 Tanner LH, Hubert JF (1991) Basalt breccias and conglomerates in the lower Jurassic McCoy Brook Formation, Fundy Basin, Nova Scotia: differentiation of talus and debris-flow deposits. J Sed Petrol 61:15–27 Walker GPL (1991) Structure and origin by injection of lava under surface crust of tumuli, “lava rises”, “lava-rise pits”, and “lavainflation clefts” in Hawaii. Bull Volcanol 53:546–558 Wright R, Flynn LP, Harris AJL (2001) Evolution of lava flow-fields at Mount Etna, 27–28 October 1999, observed by Landsat 7 ETM+. Bull Volcanol 63:1–7en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLodato, L.en
dc.contributor.authorSpampinato, L.en
dc.contributor.authorHarris, A. J. L.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorDehn, J.en
dc.contributor.authorPatrick, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentHIGP/SOEST, University of Hawai’i, Honolulu, HI, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentHIGP/SOEST, University of Hawai’i, Honolulu, HI, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptHawaii Institute of Geophysics and Planetology and School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa,-
crisitem.author.orcid0000-0003-3599-962X-
crisitem.author.orcid0000-0002-0809-9135-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lodato et al 2007.pdf1.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

49
checked on Feb 10, 2021

Page view(s) 50

298
checked on Apr 20, 2024

Download(s)

20
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric