Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2208
DC FieldValueLanguage
dc.contributor.authorallBailey, J. E.; Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoaen
dc.contributor.authorallHarris, A. J. L.; Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoaen
dc.contributor.authorallDehn, J.; Alaska Volcano Observatory/University of Alaska, Fairbanksen
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallRowland, S. K.; Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoaen
dc.date.accessioned2007-07-03T07:19:21Zen
dc.date.available2007-07-03T07:19:21Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2208en
dc.description.abstractAn open channel lava flow on Mt. Etna (Sicily) was observed during May 30–31, 2001. Data collected using a forward looking infrared (FLIR) thermal camera and a Minolta-Land Cyclops 300 thermal infrared thermometer showed that the bulk volume flux of lava flowing in the channel varied greatly over time. Cyclic changes in the channel’s volumetric flow rate occurred over several hours, with cycle durations of 113–190 min, and discharges peaking at 0.7 m3 s−1 and waning to 0.1 m3 s−1. Each cycle was characterized by a relatively short, high-volume flux phase during which a pulse of lava,with awell-defined flow front, would propagate down-channel, followed by a period of waning flow during which volume flux lowered. Pulses involved lava moving at relatively high velocities (up to 0.29 m s−1) and were related to some change in the flow conditions occurring up-channel, possibly at the vent. They implied either a change in the dense rock effusion rate at the source vent and/or cyclic-variation in the vesicle content of the lava changing its bulk volume flux. Pulses would generally overspill the channel to emplace p¯ahoehoe overflows. During periods of waning flow, velocities fell to 0.05 m s–1. Blockages forming during such phases caused lava to back up. Occasionally backup resulted in overflows of slow moving ‘a‘¯a that would advance a few tens of meters down the levee flank. Compound levees were thus a symptom of unsteady flow, where overflow levees were emplaced as relatively fast moving p¯ahoehoe sheets during pulses, and as slow-moving ‘a‘¯a units during backup. Small, localized fluctuations in channel volume flux also occurred on timescales of minutes. Volumes of lava backed up behind blockages that formed at constrictions in the channel. Blockage collapse and/or enhanced flow under/around the blockage would then feed short-lived, wave-like, downchannel surges. Real fluctuations in channel volume flux, due to pulses and surges, can lead to significant errors in effusion rate calculations.en
dc.format.extent1750933 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameSpringer-Verlagen
dc.relation.ispartofBull Volcanolen
dc.relation.ispartofseries6/68 (2006)en
dc.subjectEtnaen
dc.subjectFLIRen
dc.subjectLava channelen
dc.subjecta‘aen
dc.subjectThermalen
dc.subjectUnsteady flowen
dc.subjectMorphologyen
dc.titleThe changing morphology of an open lava channel on Mt. Etnaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber497-515en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1007/s00445-005-0025-6en
dc.relation.referencesAndronico D, Branca S, Calvari S, BurtonMR, Caltabiano T, Corsaro RA, Del Carlo P, Garf`ı G, Lodato L, Miraglia L, Mur´e F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights for into a complex plumbing system. Bull Volcanol 64:314–330, doi:10.1007/s00445-004-0372-8 Baloga S, Pieri D (1986) Time-dependent profiles of lava flows. J Geophys Res 91:9543–9552 Behncke B, Neri M (2003) The July-August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476 Bonaccorso A, Calvari S, Garf`ıG, Lodato L, Patan´eD(2003) December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30:1941–1944 Calvari S and research staff of the Instituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania, Italy (2001) Multidisciplinary approach yields insight into Mt. Etna eruption. Eos Trans AGU 82(52): 653, 656 Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flowfield during the 1991–93 eruption ofMount Etna. J Geophys Res 103:27291–27302 Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280 Calvari S, Neri M, Pinkerton H (2002) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107– 123 Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–93 Etna eruption: chronology and geological observations. Acta Vulcanol 4:1–15 Cashman KV, Thornber C, Kauahikaua J (1999) Cooling and crystallization of lava in open channels, and the transition of p¯ahoehoe lava to ‘a‘¯a. Bull Volcanol 61:306–323 Cigolini C, Borgia A, Castertano L (1984) Intracrater activity, ‘a‘¯a -block lava, viscosity and flow dynamics: Arenal volcano, Costa Rica. J Volcanol Geotherm Res 20:155–176 Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95:1255–1270 Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic ‘a‘¯a lava flows. J Geophys Res 99:11819–11831 Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri D (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 95:7177–7198 Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite imagery of the 1999 eruption of Shishaldin. Bull Volcanol 64:525–534 Dehn J, Harris AJL, Ripepe M (2001) Conduit convection insights from thermal measurements of gas puffing at Stromboli and Etna. Eos Trans AGU 82(47), Fall Meet Suppl, Abstract V52C- 01 Dehn J, HarrisAJ, PatrickMR, Calvari S, Lodato L, RipepeM(2003) Lava extrusion rates from handheld infrared imagery. Eos Trans AGU 84(46), Fall Meet Suppl, Abstract V51F-0333 Dragoni MA (1989) A dynamical model of lava flows cooling by radiation. Bull Volcanol 51:88–95 Dragoni M, Tallarico A (1994) The effect of crystallization on the rheology and dynamics of lava flows. J Volcanol Geotherm Res 59:241–252 Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30:05–325 Dragoni M, Pondrelli S, TallaricoA(1992) Longitudinal deformation of a lava flow: the influence of Bingham rheology. J Volcanol Geotherm Res 52:247–254 Flynn LP, Mouginis-Mark P (1994) Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii. Bull Volcanol 56:297–301 Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096 Griffiths RC, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62 Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540 Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermorheological model for lava flowing in a channel. Bull Volcanol 63:20–44 Harris AJL, FlynnLP, Mat´ıas O, RoseWI (2002) The thermal stealth flows of Santiaguito: implications for the cooling and emplacement of dacitic block lava flows. Geol Soc Am Bull 114:533– 546 Harris AJL, Blake S, Rothery DA, Stevens NF (1997) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. J Geophys Res 102:785–803 HarrisAJL,Dehn J, Patrick M, Calvari S, RipepeM, Lodato L (1995) Lava effusion rates from handheld thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bull Volcanol 68:107–117. doi:10.1007/s00445-005-0425-7 Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71 Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270 Hulme G (1974) Interpretation of lava flow morphology. Royal Astron Soc Geophys J 39:361–383 Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Fink JH (ed) Lava flows and domes, Springer, Berlin Heidelberg New York, pp 184–207 Kerr RC (2001) Thermal erosion by laminar lava flows. J Geophys Res 106:26453–26465 Keszthelyi L (1995) Measurements of cooling at the base of p¯ahoehoe flows. Geophys Res Lett 22:2195–2198 Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Volcanol Geotherm Res 103:27447–27464 Keszthelyi L, Harris AJL, Dehn J (2003) Observations of the effect of wind on the cooling of active lava flows. Geophys Res Lett 30:1989–1992 Kilburn CRJ (1990) Surfaces of ‘a‘¯a flow-fields on Mount Etna, Sicily: morphology, rheology, crystallization and scaling phenomena. In: Fink JH (ed) IAVCEI Proceedings in Volcanology, 2, Lava flows and domes: emplacement mechanisms and hazard implications, Springer, Berlin Heidelberg New York, pp 129– 156 Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H (ed), Encyclopedia of volcanoes, Academic, San Diego, pp 291– 306 Kilburn CRJ, Guest JE (1993) ‘a‘¯a lavas of Mount Etna, Sicily. In: Kilburn CRJ, Luongo G (eds) Active Lavas: monitoring and modeling, Univ. College of London Press, pp 73–106 Kilburn CRJ, Lopes RMC (1988) The growth of ‘a‘¯a flow-fields on Mount Etna, Sicily. J Geophys Res 93:14759–14772 Lautze NC, Harris AJL, Bailey JE, Ripepe M, Calvari S, Dehn J, Rowland S (2004) Pulsed lava effusion at Mount Etna during 2001. J Volcanol Geotherm Res 137:231–246 Lipman PW, Banks NG (1987) ‘a‘¯a flow dynamics,Mauna Loa 1984. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, vol 1350. US Geol Surv Prof Pap, pp 1527–1567 Macdonald GA (1953) p¯ahoehoe, ‘a‘¯a and block lava. Am J Sci 251:169–191 McGimsey RG, Schneider DJ, Neal CA, Roach AL (1999) Use of FLIR observations during eruption response at two Alaskan volcanoes. Eos Trans AGU 80(46), Fall Meet Suppl, Abstract V32A-07 Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. US Geol Surv Prof Pap 1350:1569– 1588 Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988– 1990 andesite lava of Lonqimay volcano, Chile. Geol Mag 129:657–678 Oppenheimer C, Yirgu G (2002) Thermal imaging of an active lava lake; Erta ’Ale Volcano, Ethiopia. Int J Remote Sens 23:4777– 4782 Patrick MR, Harris A, Dehn J, Ripepe M, Calvari S (2003) FLIR thermography and heat/mass budgets bound the 2002/2003 effusive period at Stromboli volcano. Eos Trans AGU 84(46), Fall Meet Suppl, Abstract V52C-02 Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56:343–360 Pieri DC, Glaze LS, Abrams MJ (1990) Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology 18:1018–1022 Pinkerton H, Sparks RSJ (1976) The 1975 subterminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1:167–182 Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120 Polacci M, Papale P (1997) The evolution of lava flows from ephemeral vents at Mount Etna: insights from vesicle distribution and morphological studies. J Volcanol Geotherm Res 76:1–17 Rossi MJ (1997) Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland. Geomorphology 20:95– 112 Rowland SK, Walker GPL (1990) P¯ahoehoe and ‘a‘¯a in Hawai‘i: volumetric flow rate controls the lava structure. Bull Volcanol 52:615–628 Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4:269– 271 Tallarico A, Dragoni M (1999) Viscous Newtonian laminar flow in a rectangular channel: application to Etna lava flows. Bull Volcanol 61:40–47 Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11:139– 168 Walker GPL (1967) Thickness and viscosity of Etnean lavas. Nature 213:484–485 Walker GPL (1972) Compound and simple lava fields and flood basalts. Bull Volcanol 35:579–590 Wright R, Flynn LP (2003) On the retrieval of lava flow surface temperatures from infrared satellite data. Geology 31:893– 896 Wright R, Flynn LP, Harris AJL (2001) The evolution of lava flow fields atMount Etna, 27–28 October 1999, observed by Landsat 7 ETM+. Bull Volcanol 63:1–7 Wright R, Rothery DA, Blake S, Pieri DC (2000) Visualising active volcanism with high spatial resolution satellite data: the 1991– 1993 eruption of Mount Etna. Bull Volcanol 62:256–265en
dc.description.fulltextreserveden
dc.contributor.authorBailey, J. E.en
dc.contributor.authorHarris, A. J. L.en
dc.contributor.authorDehn, J.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorRowland, S. K.en
dc.contributor.departmentHawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoaen
dc.contributor.departmentHawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentHawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptHawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptHawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
509.pdf1.71 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

74
checked on Feb 7, 2021

Page view(s) 50

223
checked on Apr 17, 2024

Download(s)

33
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric