Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2171
DC FieldValueLanguage
dc.contributor.authorallVanorio, T.; Géosciences Azur, CNRS, Université de Nice, Sophie Antinopolies, Valbonne, Franceen
dc.contributor.authorallVirieux, J.; Géosciences Azur, CNRS, Université de Nice, Sophie Antinopolies, Valbonne, Franceen
dc.contributor.authorallZollo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCapuano, P.; Dipartimento di Scienze e Tecnologie per l’Ambiente e il Territorio, Università del Moliseen
dc.contributor.authorallRusso, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-06-14T08:59:41Zen
dc.date.available2007-06-14T08:59:41Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2171en
dc.description.abstractThe Campi Flegrei (CF) caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with 3-D delay-time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite-difference travel-time computation which simultaneously inverts P-wave and S-wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P-wave and S-wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples, to take into account steam/water phase transition mechanisms affecting P-wave and S-wave velocities. Also, modelling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured over-pressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horse-shoe shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data. For a more exhaustive description of the utilized methodologies, of synthetic tests for spatial resolution and uncertainty assessment and, the interpretation of results, the reader may refer to the paper Vanorio et al. (2005).en
dc.format.extent257698 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.subjectNONEen
dc.titleA rock physics and seismic tomography study to characterize the structure of the Campi Flegrei calderaen
dc.typebook chapteren
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.relation.referencesAllard P., Maiorani A., Tedesco A., Cortecci G., Turi B. (1999). Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera. J. Volcanol. Geotherm. Res., 48, 139-59. Aster R. C., Meyer R. P. (1988). Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics, 149, 195-218. Barberi F., Corrado G., Innocenti G., Luongo G. (1984). Phlegraen Fields 1982-1984: Brief chronicle of a volcano emergency in a sensely populated area. Bull. Volcanol., 47, 175-85. Batzle M. L., Simmons G. (1997). Geothermal systems: Rocks, fluids, fractures, in The Earth’s Crust: Its Nature and Physical Properties. Geophys. Monogr. Ser., 20, 233-42, edited by Heacock JC, AGU, Washington, D.C. Batzle M. L., Wang Z. W. (1992). Seismic properties of pore fluids. Geophysics, 57, 1396- 1408. Benz H. M., Chouet B. A., Dawson P. B., Lahr J. C., Page R. A., Hole J. A. (1996). Threedimensional P and S wave velocity structure of Redoubt Volcano, Alaska. J. Geophys. Res., 101, 8111-28. Bianchi R., Coradini A., Federico C., Giberti G., Lanciano P., Pozzi J. P., Sartoris G., Scandone R. (1987). Modeling of surface deformations in volcanic areas: The 1970- 1972 and 1982-1984 crises at Campi Flegrei, Italy. J. Geophys. Res., 92, 14139-50. Bonafede M., Dragoni M., Quareni F. (1986). Displacement and stress field produced by a centre of dilation and by a pressure source in a viscoelastic half-space: Application to the study of ground deformation and seismic activity at Campi Flegrei. Geophys. J. R. Astron. Soc., 87, 455-85. Bonafede M. (1991). Hot fluid migration: An efficient source of ground deformation: Application to the 1982-1985 crisis at Campi Flegrei-Italy. J. Volcanol. Geotherm. Res., 48, 187-98. Capuano P., Achauer U. (2003). Gravity field modeling in the Vesuvius and Campanian area, in The TomoVes Seismic Project: Looking Inside Mt. Vesuvius, edited by A. Zollo et al., Cuen, Naples, Italy. Casertano L., Oliveri A., Quagliariello M. T. (1976). Hydrodynamics and geodynamics in the Phlegraean Fields area of Italy. Nature, 264, 1614. Chiodini G., Frondini F., Cardellini C., Granieri D., Marini L., Ventura G. (2001). CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res., 106, 16213-21. Chiodini G., Todesco M., Caliro S., Del Gaudio C., Macedonio G., Russo M. (2003). Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophys. Res. Lett., 30(8), 1434, doi:10.1029/2002GL016790. de Lorenzo S., Zollo A., Mongelli F. (2001). Source parameters and 3-D attenuation structure from the inversion of microearthquake pulse width data: Qp imaging and inferences on the thermal state of the Campi Flegrei Caldera. J. Geophys. Res., 106, 16265-86. Dvorak J. J., Gasparini P. (1991). History of earthquakes and vertical ground movement in Campi Flegrei caldera, southern Italy: Comparison of precursory event to the A.D. eruption of Monte Nuovo and activity since 1968. J. Volcanol. Geotherm. Res., 48, 77-92. Dvorkin J., Nur A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea datasets, Geophysics. 61, 1363-70. Dvorkin J., Prasad M., Sakai A., Lavoie D. (1999). Elasticity of marine sediments: Rock physics modeling. Geophys. Res. Lett., 26, 1781-4. Farrar C. D., Sorey M. L., Evans W. C., Howle J. F., Kerr B. D., Kennedy B. M., King C. Y., Southon J. R. (1995). Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature, 376, 675-8. Ferrucci F., Hirn A., Virieux J., De Natale G., Mirabile L. (1992). P-SV conversions at a shallow boundary beneath Campi Flegrei Caldera (Naples, Italy): Evidence for the magma chamber. J. Geophys. Res., 97, 15351-9. Gassmann F. (1951). Elastic wave through a packing of spheres. Geophysics, 16, 673-85. Hill D. P., Ellsworth W. L., Johnston M. J. S., Langbein J. O., Oppenheimer D. H., Pitt A. M., Reasenberg P. A., Sorey M. L., McNutt S. R. (1990). The 1989 earthquake swarm beneath Mammoth Mountain, California: An initial look at the 4 May through 30 September activity. Bull. Seismol. Soc. Am., 80, 325-39. Hole J. A., Brocher T. M., Klemperer S. L., Parsons T., Benz H. M., Furlong K. P. (2000). Three-dimensional seismic velocity structure of the San Francisco Bay area. J. Geophys. Res., 105, 13859-74. Husen S., Smith R. B.,Waite G. P. (2004). Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res., 131, 397-410. Ito H., DeVilbiss J., Nur A. (1979). Compressional and shear waves in saturated rock during water-steam transition. J. Geophys. Res., 84, 4731-5. Kissling E., Ellsworth W. L., Eberhart-Phillips D., Kradolfer U. (1994). Initial reference models in local earthquake tomography. J. Geophys. Res., 99, 19635-46. Latorre D., Virieux J., Monfret T., Monteiller V., Vanorio T., Got J.-L., Lyon-Caen H. (2004). A new seismic tomography of Aigion area (Gulf of Corinth-Greece) from a 1991 dataset. Geophys. J. Int., 159, 1013-31. Newhall C. G., Dzurisin D. (1988). Historical unrest at large calderas of the world. U.S. Geol. Surv. Bull. B, 1855(1-2), 1108. Oliveri del Castillo A., Quagliariello M. T. (1969). Sulla genesi del bradisismo flegreo. Atti Assoc. Geofis. Ital., 4, 1-4. Sanders C. O., Ponko S. C., Nixon L. D., Schwartz E. A. (1995). Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography. J. Geophys. Res., 100, 8311-26. Spakman W., Nolet G. (1988). Imaging algorithms, accuracy and resolution, in Mathematical Geophysics, edited by N. Vlaar, pp. 155-87, Springer, New York. Thurber C. H. (1992). Hypocenter-velocity structure coupling in local earthquake tomography. Phys. Earth Planet. Inter., 75, 55-62. Vanorio T., Prasad M., Nur A., Patella D. (2002). Ultrasonic velocity measurements in volcanic rocks: Correlation with microtexture. Geophys. J. Int., 149, 22-36. Vanorio T. (2003). Physical properties of volcanic rocks from the Campanian Plain. TOMOVES: The Internal Structure of Mt. Vesuvius: A Seismic Tomography Investigation. Edited by P. Capuano et al., Liguori Editore, 553-580. Wang Z. W., Nur A. (1989). Effect of CO2 flooding on wave velocities in rocks and hydrocarbons. Soc. Pet. Eng. Res. Eng., 3, 429-39. Zollo A., Judenherc S., Auger E., D’Auria L., Virieux J., Capuano P., Chiarabba C., de Franco R., Makris J., Michelini A., Musacchio G. (2003). Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophys. Res. Lett., 30(19), 2002, doi:10.1029/2003GL018173.en
dc.description.fulltextopenen
dc.contributor.authorVanorio, T.en
dc.contributor.authorVirieux, J.en
dc.contributor.authorZollo, A.en
dc.contributor.authorCapuano, P.en
dc.contributor.authorRusso, R.en
dc.contributor.departmentGéosciences Azur, CNRS, Université de Nice, Sophie Antinopolies, Valbonne, Franceen
dc.contributor.departmentGéosciences Azur, CNRS, Université de Nice, Sophie Antinopolies, Valbonne, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze e Tecnologie per l’Ambiente e il Territorio, Università del Moliseen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypebook chapter-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptStanford Rock Physics Laboratory, Stanford University, Stanford, CA, USA-
crisitem.author.deptUMR Geosciences Azur, Sophia Antipolis, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversità degli Studi di Salerno-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.orcid0000-0002-6074-6977-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Book chapters
Files in This Item:
File Description SizeFormat
1068.pdf251.66 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

214
checked on Apr 24, 2024

Download(s) 10

620
checked on Apr 24, 2024

Google ScholarTM

Check