Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2162

Authors: Masiello, S.*
Esposito, A. M.*
Scarpetta, S.*
Giudicepietro, F.*
Esposito, A.*
Marinaro, M.*
Title: Application of self organized maps and curvilinear component analysis to the discrimination of the vesuvius seismic signals
Issue Date: 2006
Keywords: seismic signals
unsupervised clustering techniques
Abstract: This paper reports on the unsupervised analysis of seismic signals recorded by four stations situated on the Vesuvius area in Naples, Italy. The dataset under examination is composed of earthquakes and false events like thunders, quarry blasts and man-made undersea explosions. The goal is to use these specific data for comparing the performance of three projection methods that are well known to be able to exploit structures and organizes data, providing a framework for understanding and interpreting the relationships between data items, and suggesting simple descriptions of these relationships. The three unsupervised techniques under examination are: Principal Component Analysis (PCA), which is linear, Self-Organizing Map (SOM) and Curvilinear Component Analysis (CCA), which are nonlinear. The results show that, among the above techniques, SOM can better visualize the complex set of high-dimensional data allowing to discover their intrinsic clusters structure and eventually discriminate the earthquakes from the false events either natural (thunder) or artificial (quarry blast and undersea explosions).
Appears in Collections:Conference materials
05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks

Files in This Item:

File SizeFormatVisibility
987.pdf424.96 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA