Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2150
DC FieldValueLanguage
dc.contributor.authorallTodesco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-06-12T15:48:51Zen
dc.date.available2007-06-12T15:48:51Zen
dc.date.issued2006-05-15en
dc.identifier.urihttp://hdl.handle.net/2122/2150en
dc.description.abstractHydrothermal systems are known to play an important role in the evolution of active calderas: these volcanic systems periodically undergo dramatic unrest crises, commonly involving ground deformation, seismic activity and important changes in several geophysical and geochemical parameters monitored at the surface. These unrest crises may, or may not, culminate with a renewal of the eruptive activity, but in any case they bear important consequences in densely populated regions. Early warning and a prompt evaluation of the state of evolution of the volcanic system are therefore essential to ensure proper mitigation measures. A proper interpretation of monitoring data, however, is only achieved within the framework of a robust conceptual model of the system. Recent research work carried out at the Phlegrean Fields shows that the recent evolution of the caldera is consistent with the presence of a pulsating magmatic source, periodically discharging CO2-enriched fluids into a shallow hydrothermal system. Such pulsating degassing affects the amount of heat and fluids entering the hydrothermal system, the distribution of fluid phases throughout the system, and their composition. As a consequence, degassing controls not only the composition of fluids discharged at the surface, but also ground displacement and gravity residuals. In this work, the TOUGH2 code has been applied to study how different degassing scenarios could affect the composition of discharged fluids and the gravity signals recorded at the surface.en
dc.format.extent302558 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofSymposium 2006 Lawrence Berkeley National Laboratoryen
dc.subjectvolcanic monitoringen
dc.subjectvolcanic systemsen
dc.titleMODELING OF GAS COMPOSITION AND GRAVITY SIGNALS AT THE PHLEGREAN FIELDS CALDERAen
dc.typeConference paperen
dc.description.statusPublisheden
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.description.ConferenceLocationBerkeley, California, USAen
dc.relation.referencesBarberi F. and M.L. Carapezza, The problem of volcanic unrest: the Campi Flegrei case history, in Scarpa R. and R. I. Tilling (Eds), Monitoring and mitigation of volcano hazards, Springer-Verlag, Berlin Hidelberg, Germany, 1996 Battaglia, M., C. Troise, F. Obrizzo, F. Pingue, and G. De Natale, Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophys. Res. Lett., 33, doi:10.1029/2005GL024904, 2006. Bianco F., E. Del Pezzo, G. Saccorotti, G. Ventura, The role of hydrothermal fluids in triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: evidence from seismological and mesostructural data, J. Volcanol. Geotherm. Res. 133, 229–246, 2004. Bonafede M., Hot fluid migration, an efficient source of ground deformation, application to the 1982–1985 crisis at Campi Flegrei-Italy, J. Volcanol. Geotherm. Res. 48, 187– 198, 1991. Casertano L., A. Olivieri, and M.T. Quagliariello, Hydrodynamics and geodynamics in the Phlegraean Fields area of Italy, Nature 264, 161–164, 1976. Chiodini G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura, CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy, J. Geophys. Res., 106,16213– 16222, 2001. Chiodini G., M. Todesco, S. Caliro, C. Del Gaudio, G. Macedonio and M. Russo, Magma degassing as a trigger of braydseismic events: the case of Phlegrean Fields (Italy). Geophys. Res. Lett., 30 (8), 1434-1438, 2003. Chiodini G., D. Granieri, R. Avino, S. Caliro, A. Costa, and C. Werner, Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems, J. Geophys. Res., 110, B08204, doi:10.1029/2004JB003542, 2005. Di Vito M.A., L. Lirer, G. Mastrolorenzo, and G. Rolandi, The Monte Nuovo eruption (Campi Flegrei, Italy), Bull. Volcanol., 49, 608–615, 1987. Gaeta F.S., G. De Natale, F. Peluso, G. Mastrolorenzo, F. Castagnolo, C. Troise, F. Pingue, D.G. Mita, and S. Rossano, Genesis and evolution of unrest episodes at Campi Flegrei caldera: the role of thermal-fluid-dynamical processes in the geothermal system, J. Geophys. Res. 103 (B9), 20921– 20933, 1998. Gaeta F.S., F. Peluso, I. Arienzo, D. Castagnolo, G. De Natale, G. Milano, C. Albanese, and D. Mita, A physical appraisal of a new aspect of bradyseism: the miniuplifts, J. Geophys. Res. 108 (B8), 2363, doi:10.1029/2002JB001913, 2003. Morhange C., N. Marriner, J. Laborel, M. Todesco, and C. Oberlin, Rapid lea-level movements and noneruptive crustal deformations in the Phlegrean Fields caldera, Italy, Geology, 34 (2), 93–96; doi: 10.1130/G21894.1, 2006. Orsi G., L. Civetta, C. Del Gaudio, S. de Vita, M.A. Di Vito, R.Isaia, S. Petrazzuoli, G. Ricciardi, and C. Ricco, Short-term ground deformation and seismicity in the nested Campi Flegrei caldera (Italy): an example of active block resurgence in a densely populated area, J. Volcanol. Geotherm. Res., 91 (1999) 415– 451. Pruess, K., TOUGH2 – A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Report LBL 29400, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1991. Rosi M. and A. Sbrana, The Phlegrean Fields, Quaderni de La Ricerca Scientifica, 114, Consiglio Nazionale delle Ricerche, Roma, Italy, 1987. Todesco M., J. Rutqvist, G. Chiodini, K. Pruess K., and C. M. Oldenburg, Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformation. Geothermics, 33, 531-547, 2004. Todesco M., and G. Berrino, Modeling hydrothermal fluid circulation and gravity signals at the Phlegraean Fields caldera, Earth Plan. Sci. Lett., 240, 328-338, 2005.en
dc.description.fulltextopenen
dc.contributor.authorTodesco, M.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorBerrino, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypeConference paper-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-5939-0985-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
709.PDF295.47 kBAdobe PDFView/Open
Show simple item record

Page view(s)

142
checked on Apr 24, 2024

Download(s) 50

117
checked on Apr 24, 2024

Google ScholarTM

Check