Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2093

Authors: Volpe, M.*
Melini, D.*
Piersanti, A.*
Title: Finite Element Modeling of the 2004 giant Sumatra Earthquake Postseismic Displacement Field
Issue Date: 11-Dec-2006
Keywords: Sumatra earthquake
coseismic deformation
finite element method
Abstract: The 26 December 2004 Sumatra-Andaman earthquake is one of the largest earthquakes ever recorded since 1900. The earthquake resulted from complex slip on the fault where the oceanic portion of the Indian Plate slides under the Eurasian Plate, by the Indonesian Island of Sumatra. The particular features of the detected quasi-static displacement field has been previously attributed to the heterogeneous distribution of moment release on the fault plane. In the present work, we use a new computational FEM strategy to model the co- and postseismic displacement field associated with the Sumatra earthquake. For the first time we can study the joint effects of sphericity and 3D mechanical and rheological heterogeneities on the investigated observables. The comparison between our synthetic results and the available deformation data allows us to ascertain if also lateral heterogeneities in the physical properties of the medium could have played a role in assessing the deformation field.
Appears in Collections:Conference materials
04.03.01. Crustal deformations

Files in This Item:

File SizeFormatVisibility
sumatra_agu2006.pdf8.96 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA