Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2074
DC FieldValueLanguage
dc.contributor.authorallGiammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallValenza, M.; Dipartimento Chimica e Fisica della Terra ed applicazioni, Università di Palermoen
dc.date.accessioned2007-04-05T13:35:56Zen
dc.date.available2007-04-05T13:35:56Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2074en
dc.description.abstractSoil CO2 flux measurements were carried out along traverses across mapped faults and eruptive fissures on the summit and the lower East Rift Zone of Kilauea volcano. Anomalous levels of soil degassing were found for 44 of the tectonic structures and 47 of the eruptive fissures intercepted by the surveyed profiles. This result contrasts with what was recently observed on Mt. Etna, where most of the surveyed faults were associated with anomalous soil degassing. The difference is probably related to the differences in the state of activity at the time when soil gas measurements were made: Kilauea was erupting, whereas Mt. Etna was quiescent although in a pre-eruptive stage. Unlike Mt. Etna, flank degassing on Kilauea is restricted to the tectonic and volcanic structures directly connected to the magma reservoir feeding the ongoing East Rift eruption or in areas of the Lower East Rift where other shallow, likely independent reservoirs are postulated. Anomalous soil degassing was also found in areas without surface evidence of faults, thus suggesting the possibility of previously unknown structures.en
dc.description.sponsorshipGruppo Nazionale per la Vulcanologia, C.N.R., Italyen
dc.format.extent466706 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameBirkhauser Verlag, Baselen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries163en
dc.subjectsoil CO2en
dc.subjectKilaueaen
dc.subjectvolcanic degassingen
dc.subjecttectonic structuresen
dc.subjectgeochemical surveyingen
dc.titleFault-controlled soil CO2 degassing and shallow magma bodies: summit and lower east rift of Kilauea volcano (Hawai’i)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber853-867en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1007/s00024-006-0039-9en
dc.relation.referencesANZA` , S., BADALAMENTI, B., GIAMMANCO, S., GURRIERI, S., NUCCIO, P. M., and VALENZA, M. (1993), Preliminary study on emanation of CO2 from soils in some areas of Mount Etna (Sicily), Acta Vulcanol. 3, 189–193. BADALAMENTI, B., GURRIERI, S., HAUSER, S, PARELLO, F., and VALENZA, M. (1988), Soil CO2 output in the island of Vulcano during the period 1984–88: Surveillance of gas hazard and volcanic activity. Rend. Soc. It. Min. Petrog. 43, 893–899. BRYAN, C.J. and JOHNSON, C.E. (1991), Block tectonics of the Island of Hawaii from a focal mechanism analysis of basal slip, Bull Seismol Soc Am. 81, 491–507. Vol. 163, 2006 Fault-controlled Soil CO2 Degassing 865 CONRAD, M.E., THOMAS, D.M., FLEXSER, S., and VENNEMANN, T.W. (1997) Fluid flow and water-rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii. J. Geophys. Res. 102, 15,021–15,037. COX, M.E. (1983), Summit outgassing as indicated by radon, mercury and pH mapping, Kilauea volcano, Hawaii. J. Volcanol. Geotherm. Res. 16, 131–151. DAWSON, P.B., CHOUET, B.A., OKUBO, P.G., VILLASEN˜ OR, A. and BENZ H.M. (1999), Three-dimensional velocity structure of the Kilauea caldera, Hawaii,. Geophys. Res. Lett. 26, 2805–2808. FAURE, G. Principles of Isotope Geology (New York, John Wiley and Sons 1986). FRIEDMAN, I. GLEASON, J., and JACKSON, T., Variation of d13C in fumarolic gases from Kilauea volcano. In, Volcanism in Hawaii. (Decker, R.W., Wright, T.L., and Stauffer P.H. eds) Washington, D.C, U.S.G.S. Prof. Paper 1350, 1987 pp. 805–807. GERLACH, T.M., and GRAEBER, E.J. (1985), Volatile budget of Kilauea volcano, Nature 313, 273–277. GERLACH, T.M., DOUKAS, M.P., MC,GEE, K.A., and KESSLER, R. (1998), Three-year decline of magmatic CO2 emissions from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA, 1995-1997. Geophys. Res. Lett 25, 1947–1950. GIAMMANCO, S., GURRIERI, S., and VALENZA, M. (1995), Soil CO2 degassing on Mt. Etna (Sicily) during the period 1989-1993: Discrimination between climatic and volcanic influences. Bull. Volcanol. 57, 52–60. GIAMMANCO, S., GURRIERI, S., and VALENZA, M. (1997), Soil CO2 degassing along tectonic structures of Mount Etna (Sicily): The Pernicana fault. Appl. Geochem. 12, 429–436. GIAMMANCO, S., GURRIERI, S. and VALENZA, M. (1998), Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy), Bull. Volcanol 60, 252–259. GIAMMANCO, S., GURRIERI, S., and VALENZA, M. (1999), Geochemical investigations applied to active fault detection in a volcanic area:TheNorthEastRift onMt. Etna (Sicily, Italy),Geophys.Res. Lett. 26, 2005–2008. GURRIERI, S., and VALENZA, M. (1988), Gas transport in natural porous mediums: a method for measuring CO2 flows from the ground in volcanic and geothermal areas, Rend. Soc. It. Min. Petrog. 43, 1151–1158. GURRIERI, S., CAMARDA, M., RICCOBONO, G. and VALENZA, M. (2000), Relationships between soil permeability and diffuse degassing in volcanic areas, EOS, Trans. AGU 81 (48), Fall Meet. Suppl., 2000. HELIKER, C.C., MANGAN, M.T., MATTOX, T.N., KAUAHIKAUA, J.P., and HELZ, R.T. (1998), The character of long-term eruptions: inferences from episodes 50-53 of the Pu‘u ‘O‘o-Kupaianaha eruption of Kilauea Volcano, Bull. Volcanol. 59, 381–393. HERNA´ NDEZ, P.A., PE´ REZ, N.M., SALAZAR, J.M., NAKAI, S., NOTSU, K., and WAKITA, H. (1998), Diffuse emission of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands, Geophys. Res. Lett. 25, 3311–3314. HILTON, D.R., MC,MURTY, G.M., KREULEN, R. (1997), Evidence for extensive degassing of the Hawaiian mantle plume from helium-carbon relationships at Kilauea volcano. Geophys. Res. Lett. 24, 3065–3068. HINKLE, M.E., Factors affecting concentrations of helium and carbon dioxide in soil gases. In, Geochemistry of Gaseous Elements and Compounds. (Durrance, E.M., Galimov, E.M., Hinkle, M.E., Reimer, G.M., Sugisaki R., and Augustithis, S.S. eds), (Athens, Theophrastus Publications, 1990) pp. 421–448. HOLCOMB, R.T., Eruptive history and long-term behavior of Kilauea volcano. In Volcanism in Hawaii (Decker, R.W., Wright, T.L., Stauffer, P.H. eds), (Washington, DC, U.S.G.S. Prof. Paper 1350 1987) pp.261–350. KANEMASU, E.T., POWERS, W.L, and SIJ, J.W. (1974), Field chamber measurements of CO2 flux from soil surface, Soil Sci 118: 233–237. KLUSMAN, R.W., Soil Gas and Related Methods for Natural Resource Exploration (New York, John Wiley and Sons 1993). MOORE, R.B., and TRUSDELL, F.A. Geologic Map of the Lower East Rift Zone of Kilauea Volcano, Hawaii: 1: 24,000 (Washington, D.C: U.S. Geological Survey 1991). OKUBO, P.G., BENZ, H.M., and CHOUET, B.A. (1997), Imaging the crustal magma source beneath Mauna Loa and Kilauea volcanoes, Hawaii. Geology 25, 867–870. PAN, V, HOLLOWAY, J.R., HERVIG, R.L., (1991), The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts. Geochim. Cosmochim. Acta. 55, 1587–1595. PE` REZ, N.M., WAKITA, H, PATIA, H., LOLOK, D., TALAI, B., MC, KEE, C.O. (1997), Surface geochemical evidence for gas-flow along a seismically active fault zone at Rabaul caldera, Papua New Guinea, Proc. Gen. Assembly IAVCEI, Puerto Vallarta, Mexico, p. 64. 866 S. Giammanco et al. Pure appl. geophys., REIMER, G.M. (1987), Helium at Kilauea volcano. Part II: Distribution in the summit region. In Volcanism in Hawaii. (Decker, R.W., Wright, T.L., and Stauffer, P.H. eds.) (Washington, D.C, U.S.G.S. Prof. Paper 1350, 815–819. ROSE, A.W., HAWKES, H.E., and WEBB, J.S., Geochemistry in Mineral Exploration. (London, Academic Press 1991). SIEGEL, B.Z., and SIEGEL, S.M. (1987), Hawaiian volcanoes and the biogeology of mercury. In Volcanism in Hawaii. (Decker, R.W., Wright, T.L., and Stauffer, P.H. eds.), (Washington, DC, U.S.G.S. Prof. Paper) 1350, 827–839. SUGISAKI, R., IDO, M., TAKEDA, H., ISOBE, Y., HAYASHI, Y., NAKAMURA, N., SATAKE, H., MIZUTANI, Y. (1983), Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity, J. Geology 91, 3, 239–258. THOMAS, D.M. (1987) A geochemical model of the Kilauea east rift zone. In Volcanism in Hawaii. (Decker, R.W., Wright, T.L., and (Stauffer P.H. eds.), (Washington, DC, U.S.G.S. Prof. Paper) 1350, 1507–1525. TILLING, R.I., CHRISTIANSEN, R.L., DUFFIELD, W.A, ENDO, E.T., HOLCOMB, R.T., KOYANAGI, R.Y., PETERSON, D.W., and UNGER, J.D. (1987) The 1972–1974 Mauna Ulu eruption, Kilauea Volcano: an example of quasi-steady-state magma transfer. In Volcanism in Hawaii. (Decker, R.W., Wright, T.L., and Stauffer, P.H. eds.), (Washington, DC, U.S.G.S. Prof. Paper 1350), 405–469. TILLING, R.I., and DVORAK, J.J. (1993), Anatomy of a basaltic volcano. Nature 363, 125–133. WILLIAMS,-JONES, G., HEILIGMANN, M., CHARLAND, A., SHERWOOD, Lollar B., and STIX, J. (1997), A model of diffuse degassing at three subduction-related volcanoes, Proc. Gen. Assembly IAVCEI, Puerto Vallarta, Mexico, p. 65. WOLFE, E.W., and MORRIS, J., Geologic Map of the Island of Hawaii: 1:100,000 (Washington, D.C, U.S. Geological Survey. 1996). WRIGHT, T.L. (1984), Origin of Hawaiian tholeiite: A metasomatic model, J. Geophys. Res. 89, 3,233–3,252. WRIGHT, T.L., and HELZ, R. (1987), Recent advances in Hawaiian petrology and geochemistry. In Volcanism in Hawaii. (Decker, R.W., Wright, T.L., and Stauffer, P.H. eds.), (Washington, DC, U.S.G.S. Prof. Paper 1350, 625–640).en
dc.description.fulltextopenen
dc.contributor.authorGiammanco, S.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento Chimica e Fisica della Terra ed applicazioni, Università di Palermoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0003-2588-1441-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Giammanco et al 2006.pdf455.77 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

16
checked on Feb 10, 2021

Page view(s)

150
checked on Apr 17, 2024

Download(s) 50

136
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric