Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1976

Authors: Cenedese, A.*
Miozzi, M.*
Benetazzo, A.*
Paglialunga, A.*
Daquino, C.*
Mussapi, R.*
Title: Vegetation cover analysis using a low budget hyperspectral proximal sensing system
Issue Date: Feb-2006
Series/Report no.: 49/1
URI: http://hdl.handle.net/2122/1976
Keywords: hyperspectral proximal sensing
unable filters
vegetation classification
Abstract: This report describes the implementation of a hyperspectral proximal sensing low-budget acquisition system and its application to the detection of terrestrian vegetation cover anomalies in sites of high environmental quality. Anomalies can be due to stress for lack of water and/or pollution phenomena and weed presence in agricultural fields. The hyperspectral cube (90-bands ranging from 450 to 900 nm) was acquired from the hill near Segni (RM), approximately 500 m far from the target, by means of electronically tunable filters and 8 bit CCD cameras. Spectral libraries were built using both endmember identification method and extraction of centroids of the clusters obtained from a k-means analysis of the image itself. Two classification methods were applied on the hyperspectral cube: Spectral Angle Mapper (hard) and Mixed Tuned Matching Filters (MTMF). Results show the good capability of the system in detecting areas with an arboreal, shrub or leafage cover, distinguishing between zones with different spectral response. Better results were obtained using spectral library originated by the k-means method. The detected anomalies not correlated to seasonal phenomena suggest a ground true analysis to identify their origin.
Appears in Collections:04.02.05. Downhole, radioactivity, remote sensing, and other methods
05.09.99. General or miscellaneous
Annals of Geophysics

Files in This Item:

File SizeFormatVisibility
22 Cenedese.pdf3.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA