Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1971
DC FieldValueLanguage
dc.contributor.authorallRemitti, M.; Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università degli Studi di Modena e Reggio Emilia, Modena, Italyen
dc.contributor.authorallPugnaghi, S.; Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università degli Studi di Modena e Reggio Emilia, Modena, Italyen
dc.contributor.authorallTeggi, S.; Dipartimento di Ingegneria Meccanica e Civile, Università degli Studi di Modena e Reggio Emilia, Modena, Italyen
dc.date.accessioned2006-12-07T14:40:22Zen
dc.date.available2006-12-07T14:40:22Zen
dc.date.issued2006-02en
dc.identifier.urihttp://hdl.handle.net/2122/1971en
dc.description.abstractThis work focuses on the evaluation of Aerosol Optical Thickness (AOT) in Mt. Etna volcano area starting from the analysis of MIVIS VIS images. MIVIS images and ancillary data (atmospheric profiles, photometric measurements, atmospheric infrared radiances, surface temperatures, ground reflectances, SO2 abundances) were collected during the «Sicily ’97» campaign. Data elaboration was performed with extensive use of 6S radiative transfer model, determining optical thickness with an inversion algorithm that uses atmospheric vertical profile, ground reflectance data and radiance measured by the first MIVIS spectrometer (channels 1-20; range 0.44-0.82 n). Ground reflectance is the most problematic parameter for the algorithm. In order to have a low and ‘uniform’ surface reflectance, only pixels located at an altitude between 2000-3000 m a.s.l. were analysed. At this altitude,AOT is very low during non-eruptive periods: at Torre del Filosofo (2920 m a.s.l.) on June 16th 1997, during one MIVIS flight, AOT at 0.55 n was 0.19. The uncertainty about ground reflectance produces significant errors on volcanic background AOT, and in some cases the error is up to 100%. The developed algorithm worked well on volcanic plume, allowing us to determine the plume related pixels’AOT. High plume AOT values minimize the problems deriving from reflectance uncertainty. Plume optical thickness shows values included in a range from 0.5 to 1.0. The plume AOT map of Mt. Etna volcano, derived from a MIVIS image of June 16th 1997, is presented.en
dc.format.extent6123768 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries1/49 (2006)en
dc.subjectremote sensingen
dc.subjectaerosol optical thicknessen
dc.subjectMt. Etna volcanoen
dc.subjectMIVISen
dc.subject6Sen
dc.titleMt. Etna aerosol optical thickness from MIVIS imagesen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methodsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.relation.referencesACKERMAN, S.A. (1997): Remote sensing aerosols using satellite infrared observations, J. Geophys. Res., 102 (14), 17069-17079. BUONGIORNO, M.F., L. MERUCCI, F. DOUMAZ, S. SALVI, M. P. BOGLIOLO, S. PUGNAGHI, S. TEGGI, S. CORRADINI, L. LOMBROSO, A. STERNI, T. CALTABIANO and V. CARRÉRE (1999): MVRRS campaign: MIVIS mission on Sicilian volcanoes and ground measurements, Quad. Geofis., 7, pp. 90. DAEDALUS (1996): MIVIS Technical Specifications, Daedalus Enterprises. IGNATOV, A. and L. STOWE (2002a): Aerosol retrievals from individual AVHRR channels, Part I. Retrieval algorithm and transition from Dave to 6S radiative transfer model, J. Atmos. Sci., 59 (3), 313-334. IGNATOV, A. and L. STOWE (2002b): Aerosol retrievals from individual AVHRR channels, Part II. Quality control, probability distribution functions, information content, and consistency checks of retrievals, J. Atmos. Sci., 59 (3), 335-362. MOULA, M., J. VERDEBOUT and H. EVA (2002): Aerosol optical thickness retrieval over the Atlantic Ocean using GOES imager data, Phys. Chem. Earth, 27 (35), 1525- 1531. PEARLMAN, J., C. SEGAL, P. CLANCY, N. NELSON, P. JARECKE, M. ONO, D. BEISO, L. LIAO, K. YOKOYAMA, S. CARMAN, B. BROWNE, L. ONG and S. UNGAR (2001): The EO-1 Hyperion Imaging Spectrometer (available on line at: http://eo1.usgs.gov/documents/hyperionpub.asp). PORTER, J.N., K.A. HORTON, P.J. MOUGINIS-MARK, B. LIENERT, S. K. SHARMA, E. LAU, A.J. SUTTON, T. ELIAS and C. OPPENHEIMER (2002): Sun photometer and LIDAR measurements of the plume from the Hawaii Kilauea Volcano Pu’u O’o vent: aerosol flux and SO2 lifetime, Geophys. Res. Lett., 29 (16), 1783. PRATA, A.J. (1989): Infrared radiative transfer calculation for volcanic ash clouds, Geophys. Res. Lett., 16 (11), 1293-1296. REMITTI, M. (2001): Sviluppo di tecniche di telerilevamento per il monitoraggio di aerosol e nubi vulcaniche, Tesi di Laurea (Università degli Studi di Modena e Reggio Emilia). REMITTI, M., S. PUGNAGHI, S. TEGGI and F. PARMIGGIANI (2006): Retrieval of tropospheric ash clouds of Mt. Etna from AVHRR data, in Proceedings of the Mid Term Meeting of the GNV Project on Remote Sensing, 24-25 January 2002, Catania, Quad. Geofis. (in press). SCHNEIDER, D.J., W.I. ROSE, L.R. COKE, G.J.S. BLUTH, I.E. SPROD and A.J. KRUEGER (1999): Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR, Geophys. Res. Lett., 104 (4), 4037- 4050. SIMPSON, J.J., G. HUFFORD, D. PIERI and J. BERG (2000): Failures in detecting volcanic ash from a satellite-based technique, Remote Sensing Environ., 72, 192-217. VERMOTE, E., D. TANRÉ, J.L. DEUZÉ, M. HERMAN and J.J. MORCRETTE (1997): Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Version 2 (University of Maryland, Dept. Of Geograph/ Laboratoire d’Optique Atmospherique, Lille). WATSON, I.M. and C. OPPENHEIMER (2000): Particle size distributions of Mount Etna’s aerosol plume constrained by sun photometry, J. Geophys. Res., 105 (8), 9823-9829. WEN, S. and W.I. ROSE (1994): Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, J. Geophys. Res., 99 (3), 5421-5431.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRemitti, M.en
dc.contributor.authorPugnaghi, S.en
dc.contributor.authorTeggi, S.en
dc.contributor.departmentDipartimento di Ingegneria dei Materiali e dell’Ambiente, Università degli Studi di Modena e Reggio Emilia, Modena, Italyen
dc.contributor.departmentDipartimento di Ingegneria dei Materiali e dell’Ambiente, Università degli Studi di Modena e Reggio Emilia, Modena, Italyen
dc.contributor.departmentDipartimento di Ingegneria Meccanica e Civile, Università degli Studi di Modena e Reggio Emilia, Modena, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Ingegneria dei Materiali e dell’Ambiente, Università degli Studi di Modena e Reggio Emilia, Modena, Italy-
crisitem.author.deptUniversità di Modena e Reggio Emilia-
crisitem.author.deptDipartimento di Ingegneria dei Materiali e dell Ambiente (Osservatorio Geofi sico), Università di Modena e Reggio Emilia, Modena, Italy-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
17 Remitti.pdf5.98 MBAdobe PDFView/Open
Show simple item record

Page view(s)

131
checked on Apr 20, 2024

Download(s) 20

517
checked on Apr 20, 2024

Google ScholarTM

Check