Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1944

Authors: Gallovic, F.*
Burjanek, J.*
Title: High-Frequency Directivity in Strong Ground Motion Modeling Methods
Issue Date: 6-Dec-2006
Keywords: directivy, strong ground motions
Abstract: We are investigating two distinct strong ground motion simulation techniques as regards their high-frequency directivity: i) the composite model with a fractal subevent size dis- tribution, based on the method of summation of empirical Green’s functions, and ii) the integral model with the k-squared slip model with k-dependent rise time, based on the representation theorem. We test the simulations in a 1D layered crustal model against em- pirical PGA attenuation relations, particularly with regard to their uncertainty, described by the standard deviation ( ). We assume that any synthetic model for a particular earth- quake should not provide a PGA scatter larger than the observed scatter for a large set of earthquakes. The 1999 Athens earthquake (Mw=5.9) is studied as a test example. In the composite method, the synthetic data display a scatter of less than ±2 around the empirical mean. The k-squared method displays a larger scatter, demonstrating strong high-frequency directivity. It is shown that the latter can be reduced by introducing a formal spectral modification. 1 Introduction Low-frequency directivity effects are well known. For example, there is a number of seismic recordings of recent earthquakes (e.g., 1992 Landers, 1994 Northridge, 1995 Kobe, 1999 Chi-Chi), which show long-period velocity pulses caused by rupture propagation towards a station. This effect can be successfully explained by the apparent source time function varying with azimuth (Haskell, 1964). 2
Appears in Collections:Manuscripts
04.06.03. Earthquake source and dynamics
04.06.04. Ground motion

Files in This Item:

File SizeFormatVisibility
Gallovic.Burjanek.Directivity.zip8.29 MBzipView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA