Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1558
DC FieldValueLanguage
dc.contributor.authorallBonafede, M.; Dipartimento di Fisica, Settore di Geofisica, Università di Bologna, Italyen
dc.contributor.authorallCenni, N.; Dipartimento di Fisica, Settore di Geofisica, Università di Bologna, Italyen
dc.date.accessioned2006-09-11T07:53:27Zen
dc.date.available2006-09-11T07:53:27Zen
dc.date.issued1997-10en
dc.identifier.urihttp://hdl.handle.net/2122/1558en
dc.description.abstractA porous flow model for magma migration from a deep source within a volcanic edifice is developed. The model is based on the assumption that an isotropic and homogeneous system of fractures allows magma migration from one localized feeding dyke up to the surface of the volcano. The maximum level that magma can reach within the volcano (i.e., the «free surface» of magma, where fluid pressure equals the atmospheric pressure) is reproduced through a second-order perturbation approach to the non-linear equations governing the migration of incompressible fluids through a porous medium. The perturbation parameter is found to depend on the ratio of the volumic discharge rate at the source (m3/s) divided by the product of the hydraulic conductivity of the medium (m1/s) times the square of the source depth. The second-order corrections for the free surface of Mt. Etna are found to be small but not negligible; from the comparison between first-order and second-order free surfaces it appears that the former is higher near the summit, slightly lower at intermediate altitudes and slightly higher far away from the axis of the volcano. Flank eruptions in the southern sector are found to be located in regions where the topography is actually lower than the theoretical free surface of magma. In this sector, modulations in the eruption site density correlate well with even minor differences between free surface and topography. In the northern and western sectors similar good fits are found, while the NE rift and the eastern sector seem to require mechanisms or structures respectively favouring and inhibiting magma migration.en
dc.format.extent2800804 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries5/40 (1997)en
dc.subjectvolcanoesen
dc.subjectmagma migrationen
dc.subjectporous mediumen
dc.subjectflank eruptionsen
dc.titleA porous flow model of flank eruptions on Mt. Etna: second-order perturbation theoryen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBonafede, M.en
dc.contributor.authorCenni, N.en
dc.contributor.departmentDipartimento di Fisica, Settore di Geofisica, Università di Bologna, Italyen
dc.contributor.departmentDipartimento di Fisica, Settore di Geofisica, Università di Bologna, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Bologna-
crisitem.author.deptDipartimento di Fisica - Settore Geofisica - Univ. di bologna-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
06 bonafede.pdf2.74 MBAdobe PDFView/Open
Show simple item record

Page view(s)

143
checked on Apr 24, 2024

Download(s) 50

140
checked on Apr 24, 2024

Google ScholarTM

Check