Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Selvaggi, G.*
D'Ajello Caracciolo, F.*
Title: Seismic deformation at the Alban Hills volcano during the 1989-1990 seismic sequence
Issue Date: Jun-1998
Series/Report no.: 41/2
Keywords: Seismic moment release
average strain rate tensor
Alban Hills volcano
Abstract: We analysed the one-year-long seismic swarm at the Alban Hills volcano which occurred during 1989-1990. We portray spatial distribution of seismic moment release, better delineating the activated volume during the swarm. The seismic structure is imaged as a 7-km long, 3-km wide, and 3-km thick volume, located between 2 and 5 km depth, and NW-SE striking. Fault plane solutions and scalar seismic moments for the largest earthquakes provide the description of the average strain rate tensor. The principal strain rate axes show a dominant extension in NE-SW direction, a SE-NW direction of compression and a negligible thickening rate. P and T axes direction of the smaller earthquakes suggests that the same mode of deformation is distributed all over the activated volume. These results are discussed in terms of seismic deforming processes active at the Alban Hills volcano, in the frame of magmatic inflation recently invoked to explain the rapid vertical uplift affecting part of the volcano. The observed average deformation is consistent with shear failures occurring on faults connecting stress-oriented dykes in response to an increasing fluid pressure.
Appears in Collections:04.06.08. Volcano seismology
Annals of Geophysics

Files in This Item:

File SizeFormatVisibility
07 selvaggi.pdf1.97 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA