Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1174
DC FieldValueLanguage
dc.contributor.authorallSpieler, O.; University of Munich (LMU)en
dc.contributor.authorallKennedy, B.; University of Munich (LMU), McGill Universityen
dc.contributor.authorallKueppers, U.; University of Munich (LMU)en
dc.contributor.authorallDingwell, D. B.; University of Munich (LMU)en
dc.contributor.authorallScheu, B.; University of Munich (LMU)en
dc.contributor.authorallTaddeucci, J.; University of Munich (LMU), INGV Romaen
dc.date.accessioned2006-06-17T18:57:04Zen
dc.date.available2006-06-17T18:57:04Zen
dc.date.issued2004-09-30en
dc.identifier.urihttp://hdl.handle.net/2122/1174en
dc.description.abstractIn response to rapid decompression, porous magma may fragment explosively. This occurs when the melt can no longer withstand forces exerted upon it due to the overpressure in included bubbles. This occurs at a critical pressure difference between the bubbles and the surrounding magma. In this study we have investigated this pressure threshold necessary for the fragmentation of magma. Here we present the first comprehensive, high temperature experimental quantification of the fragmentation threshold of volcanic rocks varying widely in porosity, permeability, crystallinity, and chemical composition. We exposed samples to increasing pressure differentials in a high temperature shock tube apparatus until fragmentation was initiated. Experimentally, we define the fragmentation threshold as the minimum pressure differential that leads to complete fragmentation of the pressurized porous rock sample. Our results show that the fragmentation threshold is strongly dependent on porosity; high porosity samples fragment at lower pressure differentials than low porosity samples. The fragmentation threshold is inversely proportional to the porosity. Of the other factors, permeability likely affects the fragmentation threshold at high porosity values, whereas chemical composition, crystallinity and bubble size distribution appear to have minor effects. The relationship for fragmentation threshold presented here can be used to predict the minimum pressure differential necessary for the initiation or cessation of the explosive fragmentation of porous magma.en
dc.format.extent411365 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries226 (2004)en
dc.subjectfragmentationen
dc.subjectthresholden
dc.subjectexperimentalen
dc.subjectvolcanologyen
dc.subjectmagmaen
dc.subjecteruptionen
dc.subjectporosityen
dc.subjectdecompressionen
dc.titleThe fragmentation threshold of pyroclastic rocksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber139-148en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1016/j.epsl.2004.07.016en
dc.relation.references[1] A.R. McBirney, T. Murase, Factors governing the formation of pyroclastic rocks, Bull. Volcanol. 34 (1970) 372– 384. [2] M. Alidibirov, A model for viscous magma fragmentation during volcanic blasts, Bull. Volcanol. 56 (1994) 459– 465. [3] Y. Zhang, A criterion for the fragmentation of bubbly magma based on brittle failure theory, Nature 402 (1999) 648–650. [4] B. Zimanowski, R. Bqttner, V. Lorenz, H.-G. H7fele, Fragmentation of basaltic melt in the course of explosive volcanism, J. Geophys. Res. 102 (1997) 803– 814. [5] P. Papale, Strain-induced magma fragmentation in explosive eruptions, Nature 397 (1999) 425– 428. [6] D.B. Dingwell, S.L. Webb, Structural relaxation in silicate melts and non-Newtonian melt rheology in igneous processes, Phys. Chem. Miner. 16 (1989) 508–516. [7] K.H. Wohletz, Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies, J. Volcanol. Geotherm. Res. 17 (1983) 31– 63. [8] B. Zimanowski, G. Frfhlich, V. Lorenz, Quantitative experiments on phreatomagmatic explosions, J. Volcanol. Geotherm. Res. 48 (1991) 341–358. [9] B. Zimanowski, G. Frfhlich, V. Lorenz, Experiments on steam explosions by interaction of water with silicate melts, Nucl. Eng. Des. 155 (1995) 335–343. [10] R.P. Hoblitt, D.C. Miller, J.W. Vallance, Origin and stratigraphy of the deposits produced by the May 18 directed blast, in: P.W. Lipman, D.R. Mullineaux (Eds.), The 1980 eruptions of Mount St. Helens, Washington, 1981, pp. 401– 419. [11] B. Voight, R.J. Janda, H. Glicken, P.M. Douglass, Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980, Geotechnique 33 (1983) 243– 273. [12] T.H. Druitt, S.R. Young, B. Baptie, C. Bonadonna, E.S. Calder, A.B. Clarke, P.D. Cole, C.L. Harford, R.A. Herd, R. Luckett, G. Ryan, B. Voight, Episodes of cyclic vulcanian explosive activity with fountain collapse at Soufrie`re Hills volcano, Montserrat, in: T.H. Druitt, B.P. Kokelaar (Eds.), The Eruption of Soufrie`re Hills Volcano, Montserrat, from 1995 to 1999, Geological Society London Memoirs, vol. 21, 2002, pp. 281– 306. [13] J.M. Bardintzeff, Merapi volcano (Java, Indonesia) and Merapi-Type Nue´e Ardente, Bull. Volcanol. 47 (1984) 433–446. [14] S. Tait, C. Jaupart, S. Vergniolle, Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber earth planet, Sci. Lett. 92 (1999) 107– 123. [15] R.S.J. Sparks, S.R. Young, J. Barclay, E.S. Calder, P. Cole, B. Darroux, M.A. Davies, T.H. Druitt, C. Harford, R. Herd, M. James, A.-M. Lejeune, G. Norton, G. Skerrit, M.V. Stasiuk, N.F. Stevens, J. Toothill, G. Wadge, Magma production and growth of the lava dome of the Soufrie`re Hills volcano, Montserrat, West Indies: November 1995 to December 1997, Geophys. Res. Lett. 25 (1998) 3421– 3424. [16] J. Stix, R.C. Torres, L.M. Narvaez, G.P.J. Corte´s, J.A. Raigosa, D.M. Go´mez, R. Castonguay, A model of vulcanian eruptions at Galeras volcano, Colombia, J. Volcanol. Geotherm. Res. 77 (1997) 285– 303. [17] O. Navon, V. Lyankhovsky, Vesiculation processes in silicic magmas, in: J.S. Gilbert, R.S.J. Sparks (Eds.), The Physics of Explosive Volcanic Eruptions, Spec Pub-Geol Soc London, vol. 145, 1998, pp. 27–50. [18] H. Massol, C. Jaupart, The generation of gas overpressure in volcanic eruptions, earth planet, Sci. Lett. 166 (1999) 57– 70. [19] M. Alidibirov, D.B. Dingwell, Magma fragmentation by rapid decompression, Nature 380 (1996) 146–148. [20] M. Alidibirov, D.B. Dingwell, An experimental facility for investigation of magma fragmentation by rapid decompression, Bull. Volcanol. 58 (1996) 411– 416. [21] M. Alidibirov, D.B. Dingwell, Three fragmentation mechanisms for highly viscous magma under rapid decompression, J. Volcanol. Geotherm. Res. 100 (2000) 413–421. [22] O. Spieler, M. Alidibirov, D.B. Dingwell, Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature, Bull. Volcanol. 65 (2003) 90– 104. [23] C. Martel, D.B. Dingwell, O. Spieler, M. Pichavant, M. Wilke, Experimental fragmentation of crystal- and vesicle-bearing silicic melts, Bull. Volcanol. 63 (2001) 345– 359. [24] D.B. Dingwell, Magma degassing and fragmentation: recent experimental advances, in: A. Freundt, M. Rosi (Eds.), From Magma to Tephra. Modelling Physical Processes of Explosive Volcanic Eruptions, Elsevier, Amsterdam, 1998, pp. 1 – 23. [25] O. Spieler, D.B. Dingwell, M. Alidibirov, Magma fragmentation speed: an experimental determination, J. Volcanol. Geotherm. Res. 129 (2004) 109–123. [26] B. Scheu, O. Spieler, D.B. Dingwell, Dynamics of explosive volcanism at Unzen: an experimental contribution. Bull. Volcanol., submitted for publication. [27] R.S.J. Sparks, The dynamics of bubble formation and growth in magmas: a review and analysis, J. Volcanol. Geotherm. Res. 28 (1978) 257– 274. [28] R.S.J. Sparks, J. Barclay, C. Jaupart, H.M. Mader, J.C. Phillips, Physical aspects of magma degassing: I. Experimental and theoretical constraints on vesiculation, Rev. Miner. 30 (1994) 414–445. [29] N. Thomas, C. Jaupart, S. Vergniolle, On the vesicularity of pumice, J. Volcanol. Geotherm. Res. 99 (1994) 15633– 15644. [30] J. Barclay, M.R. Carroll, B.F. Houghton, C.J.N. Wilson, Preeruptive volatile content and degassing history of an evolving peralkaline volcano, J. Volcanol. Geotherm. Res. 74 (1996) 75– 87. [31] J.E. Gardner, R.M.E. Thomas, C. Jaupart, S. Tait, Fragmentation of magma during plinian volcanic eruptions, Bull. Volcanol. 58 (1996) 144– 162. [32] A.A. Griffith, The phenomena of rupture and flow in solids, Trans. Phys. Soc. Lond., Ser. A 22 (1921) 163–198. [33] J.K. MacKenzie, The elastic constants of a solid containing spherical holes, Proc. Phys. Soc. Lond., B 63 (1950) 1– 11. [34] C. Romano, J. Mungall, T. Sharp, D.B. Dingwell, Tensile strengths of hydrous vesicular glasses: an experimental study, Am. Mineral. 81 (1996) 1148–1154. [35] H. Scholze, Glas—Natur, Struktur und Eigenschaften, Springer-Verlag, 1988. [36] S.L. Webb, D.B. Dingwell, Non-Newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt and nephelinite, J. Geophys. Res. 95 (1990) 15695– 15701. [37] J.E. Mungall, N.S. Bagdassarov, C. Romano, D.B. Dingwell, Numerical modelling of stress generation and microfracturing of vesicle walls in glassy rocks, J. Volcanol. Geotherm. Res. 73 (1996) 33– 46. [38] S. Mueller, O. Melnik, O. Spieler, B. Scheu, D.B. Dingwell, Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull. Volcanol., submitted for publication. [39] C. Jaupart, Gas loss through conduit walls during eruption, in: J.S. Gilbert, R.S.J. Sparks (Eds.), Physics of Explosive Volcanic Eruptions, Geol. Soc. London Spec. Publ. 145 (1998) 73–90. [40] J.C. Eichelberger, C.R. Carrigan, H.R. Westrich, R.H. Price, Non-explosive silicic volcanism, Nature 323 (1986) 598–602. [41] C. Klug, K.V. Cashman, Vesiculation of May 18, 1980, Mt. St. Helens magma, Geology 22 (1994) 468–472. [42] M. Ichihara, D. Rittel, B. Sturtevant, Fragmentation of a porous viscoelastic material: implications to magma fragmentation, J. Geophys. Res. 106 (2002) 2226– 2239. [43] D.B. Dingwell, Volcanic dilemma: flow or blow? Science 273 (1996) 1054– 1055. [44] J. Neuberg, C. O’Gorman, A model of the seismic wavefield in gas-charged magma: application to the Soufrie`re Hills Volcano, Montserrat, in: H. Druitt, P. Kolelaar (Eds.), The Eruption of the Soufrie`re Hills Volcano, Montserrat, from 1995 to 1999, Geol. Soc. London Memoirs, 2002, pp. 603– 609. [45] S. Sturton, J. Neuberg, The effects of a decompression on seismic parameter profiles in a gas-charged magma, J. Volcanol. Geotherm. Res. 128 (2003) 187– 199. [46] J. Taddeucci, O. Spieler, B. Kennedy, M. Pompilio, D.B. Dingwell, P. Scarlato, Experimental and analytical modeling of basaltic ash explosions at Mt. Etna, Italy, J. Geophys. Res. (2004) (in press). [47] U. Kueppers, B. Scheu, O. Spieler, D.B. Dingwell, Fieldbased density measurements as tool to identify pre-eruption dome structure: set-up and first results from Unzen volcano Japan, J. Volcanol. Geotherm. Res. (submitted). [48] S. Nakada, Y. Motomura, Petrology of 1990–1995 eruption, J. Volcanol. Geotherm. Res. 89 (1999) 173– 196. [49] J.E. Hammer, K.V. Cashman, B. Voight, Magmatic processes revealed by textural and compositional trends of Merapi dome lavas, J. Volcanol. Geotherm. Res. 100 (2000) 165– 192. [50] J. Taddeucci, M. Pompilio, P. Scarlato, Monitoring the explosive activity of the July–August 2001 eruption of Mt. Etna (Italy) by ash characterization, Geophys. Res. Lett. 29 (2002) 71. [51] M.A. Di Vito, R. Isaia, G. Orsi, J. Southon, S. de Vita, M. D’Antonio, L. Pappalardo, M. Piochi, Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res. 91 (1999) 221– 246. [52] S. deVita, G. Orsi, L. Civetta, A. Carandente, M. D’Antonio, A. Deino, T. di Cesare, M.A. Di Vito, R.V. Fisher, R. Isaia, E. Marotta, A. Necco, M. Ort, L. Pappalardo, M. Piochi, J. Southon, The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res. 91 (1999) 269– 301. [53] T.H. Druit, R.A. Mellors, D.M. Pyle, et al., Explosive volcanism on Santorini, Greece, Geol. Mag. 126 (1989) 95– 126. [54] G.F. Zellmer, C.J. Hawkesworth, R.S.J. Sparks, L.E. Thomas, C.L. Harford, T.S. Brewer, S.C. Loughlin, Geochemical evolution of the Soufrie`re Hills volcano Montserrat, Lesser Antilles volcanic arc, J. Petrol. 44 (2003) 1349–1374. [55] M. Alidibirov, D.B. Dingwell, R.J. Stevenson, K.U. Hess, S.L. Webb, J. Zinke, Physical properties of the 1980 Mount St. Helens cryptodome magma, Bull. Volcanol. 59 (1997) 103– 111.en
dc.description.fulltextpartially_openen
dc.contributor.authorSpieler, O.en
dc.contributor.authorKennedy, B.en
dc.contributor.authorKueppers, U.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.authorScheu, B.en
dc.contributor.authorTaddeucci, J.en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU), McGill Universityen
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU), INGV Romaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Munich (LMU)-
crisitem.author.deptUniversity of Munich (LMU), McGill University-
crisitem.author.deptDept. of Earth and Environmental Sciences, Ludwig-Maximilians Universit¨at, Munich, Germany-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-2815-1444-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.orcid0000-0002-0478-1049-
crisitem.author.orcid0000-0002-0516-3699-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Manuscripts
Files in This Item:
File Description SizeFormat Existing users please Login
epsl 226 (139-148) spieler et al.pdfpublisher's version401.72 kBAdobe PDF
Spieler_fragmentation_threshold_epsl.pdfPost-print492 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

178
checked on Feb 10, 2021

Page view(s) 50

255
checked on Apr 13, 2024

Download(s) 5

1,553
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric