Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11690
DC FieldValueLanguage
dc.date.accessioned2018-04-11T07:06:34Zen
dc.date.available2018-04-11T07:06:34Zen
dc.date.issued2016-10-04en
dc.identifier.urihttp://hdl.handle.net/2122/11690en
dc.description.abstractThe interior of the Australian continent shows evidence for late Quaternary to Recent fault-controlled mantle 3He and CO2degassing. A series of interconnected NW-striking sinistral faults, the Norwest fault zone (NFZ), in south-central Australia are associated with travertine mounds, the latter show a regular spacing of 50–70km. U-series ages on 26 samples range from 354 ±7to 1.19 ±0.02 ka(2σerrors) and suggest a clustering every ∼3–4ka since ∼26ka. Geochemical data demonstrate a remarkable mantle-to-groundwater connection. Isotopic data indicate that the groundwater is circulating to depths >3km and interacting with Neoproterozoic/Cambrian basement and mantle volatiles. 3He/4He isotope ratios show that the He comes in part from the mantle. This demonstrates that the NFZ cuts through the entire crust and provides pathways for mantle degassing. Scaling relationships suggest that the series of sinistral faults that make up the NFZ are interconnected at depths and have a significant strike length of 60–70km or more. The NFZ occurs where a major compositional boundary and a significant heat flow anomaly occurs, and a major step in lithospheric thickness has been mapped. We discuss a tectonic model in which recent stress field, heat flow and lithospheric structure in central Australia reactivated a set of steeply dipping Neoproterozoic faults, which may now be growing into a crustal/lithospheric-scale structure.en
dc.language.isoEnglishen
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/454(2016)en
dc.subjectneotectonicsen
dc.subjectgeochemistryen
dc.subjectlithospheric structureen
dc.subjectstrike-slip faulten
dc.titleRecent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australiaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber304-318en
dc.subject.INGVfluids and mantle degassingen
dc.identifier.doi10.1016/j.epsl.2016.09.017en
dc.relation.referencesAdlam, R., Kuang, K.S., 1988. An investigation of structures controlling discharge of spring waters in the south western Great Artesian Basin. Depart. Mines Energy South Australia report 88/4, 16pp. Ague, J.J., 2014. Fluid flow in the deep crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol.4, second edition. Elsevier, pp.203–247. Balfour, N.J., Cummins, P.R., Pilia, S., Love, D., 2015. Localization of intraplate de-formation through fluid-assisted faulting in the lower-crust: the flinders ranges, South Australia. Tectonophysics655, 97–106. Ballentine, C.J., Burgess, R., Marty, B., 2002. Tracing fluid origin, transport and inter-action in the crust. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Reviews in Mineralogy and Geochemistry—Noble Gases in Geochemistry and Cosmochem-istry, vol. 47. Mineral. Soc. Am., Washington, D.C., pp.539–614. Bergfeld, D., Evans, W.C., Lowenstern, J.B., Hurwitz, S., 2012. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yel-lowstone National Park, Wyoming. Chem. Geol.330–331, 233–243. Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism based on rapid sealing of faults. Nature358, 574–576. Boreham, C.J., Hope, J.M., Hartung-Kagi, B., 2001. Understanding source, distribution and preservation of Australian natural gas: a geochemical perspective. J. Austral. Petrol. Expl. Assoc.2001, 523–547. Braun, J., Gesto, F., Burbidge, D., Cummins, P., Sandiford, M., Gleadow, A., Kohn, B., 2009. Constraints on the current rate of deformation and surface uplift of the Australian continent from a new seismic database. Aust. J. Earth Sci.56, 99–110. Byerlee, J.D., 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology23, 303–306. Célérier, J., Sandiford, M., Hansen, D.L., Quigley, M., 2005. Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics24, TC6006. Chacko, T., Mayeda, T.K., Clayton, R.N., Goldsmith, J.R., 1991. Oxygen and carbon isotope fractionations between CO2and calcite. Geochim. Cosmochim. Acta55, 2867–2882. Cheng, H., Edwards, R., Hoff, J., Gallup, C., Richards, D., Asmerom, Y., 2000. The half-lives of uranium-234 and thorium-230. Chem. Geol.169, 17–33. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A., Schöpfer, M.P.J., 2009. A geometric model of fault zone and fault rock thickness variations. J. Struct. Geol.31, 117–127. Clark, T.R., Zhao, J-X., Roff, G., Feng, Y-X., Donec, T.J., Nothdurft, L.D., Pandolfi, J.M., 2014. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef. Geochim. Cosmochim. Acta138, 57–80. Collerson, K.D., Ullman, W.J., Torgersen, T., 1988. Ground waters with unradiogenic 87Sr/86Sr ratios in the Great Artesian Basin, Australia. Geology16, 59–63. Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Min-eral. Petrol.80, 189–200. Conrad, C.P., Bianco, T.A., Smith, E.I., Wessel, P., 2011. Patterns of intra-plate volcan-ism controlled by asthenospheric shear. Nat. Geosci.4, 317–321. Cowie, P.A., Scholz, C.H., 1992. Displacement-length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol.14, 1149–1156. Davies, D.R., Rawlison, N., 2014. On the origin of recent intraplate volcanism in Aus-tralia. Geology42, 1031–1034. DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions. Geo-phys. J. Int.181, 1–80. Dyksterhuis, S., Müller, R.D., 2008. Cause and evolution of intraplate orogeny in Aus-tralia. Geology36, 495–498. Etheridge, M.A., 1983. Differential stress magnitudes during regional deformation and metamorphism: upper bound imposed by tensile fracturing. Geology11, 213–234. Famin, V., Nakashima, S., Boullier, A.M., Fujimoto, K., Hirono, T., 2008. Earthquakes produce carbon dioxide in crustal faults. Earth Planet. Sci. Lett.265, 487–497. Fishwick, S., Heintz, M., Kennett, B.L.N., Reading, A.M., Yoshizawa, K., 2008. Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. Tectonics27, TC4009. Geological Survey of South Australia, Curdimurka, atlas sheet series SH 53-8, 1992 1:250,000.Gold, T., Soter, S., 1984. Fluid ascent through the solid lithosphere and its relation to earthquakes. Pure Appl. Geophys.122, 492–530. Güleç, N., Mutlu, H., Hilton, R.D., 2014. Gas geochemistry of Turkish geothermal flu-ids: He–CO2systematics in relation to active tectonics and volcanism. In: Baba, A., Bundschuh, J., Chandrasekharam, D. (Eds.), Geothermal Systems and Energy Resources: Turkey and Greece. In: Series: Sustainable Energy Development. CRC Press, pp.13–23. Heier, K.S., Rhodes, J.M., 1966. Thorium, uranium and potassium concentrations in granites and gneisses of the Rum Jungle complex, Northern Territory, Australia. Econ. Geol.61, 3–12. Hillis, R.R., Reynolds, S.D., 2000. The Australian stressmap. J. Geol. Soc. (Lond.)157, 915–921. Hillis, R.R., Sandiford, M., Reynolds, S.D., Quigley, M.C., 2008. Present-day stress, seismicity and Neogene-to-Recent tectonics of Australia’s ‘passive’ margins: in-traplate deformation controlled by plate boundary forces. In: Johnson, H., Doré, A.G., Gatliff, R.W., Holdsworth, R., Lundin, E.R., Ritchie, J.D. (Eds.), The Nature and Origin of Compression in PassiveMargins. In: Geol. Soc. (Lond.) Spec. Publ., vol.306, pp.71–90. Hilton, D.R., 1996. The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley caldera (Cal-ifornia, U.S.A.). Chem. Geol.127, 269–295. Holford, S.P., Hillis, P.R., Hand, M., Sandiford, M., 2011. Thermal weakening localizes intraplate deformation along the southern Australian continental margin. Earth Planet. Sci. Lett.305, 207–214. Holocher, J., Peeters, F., et al., 2002. Experimental investigations on the formation of excess air in quasi-saturated porous media. Geochim. Cosmochim. Acta66, 4103–4117. Hubbert, M.K., Willis, D.G., 1957. Mechanics of hydraulic fracturing. Trans. Am. Inst. Min. Metall. Pet. Eng. Inc.210, 153–168. Italiano, F., Bonfanti, P., Ditta, M., Petrini, R., Slejko, F., 2009. Helium and carbon isotopes in the dissolved gases of Friuli region (NE Italy): geochemical evidence of CO2production and degassing over a seismically active area. Chem. Geol.266, 76–85. Italiano, F., Yuce, G., Uysal, I.T., Gasparon, M., Morelli, G., 2014. Insights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia. Chem. Geol.378/379, 75–88. Jenkins, R.J.F., 1990. The Adelaide Fold Belt: tectonic reappraisal. Spec. Publ., Geol. Soc. Aust.16, 395–420. Kampman, N., et al., 2012. Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nat. Geosci.5, 352–358. Karlstrom, K.E., Love, A., Crossey, L.J., Priestley, S., Asmerom, Y., Embid, E., 2009. Mantle degassing and travertine deposits as neotectonic indicators in the Great Artesian Basin of Australia. Abstr. Program – Geol. Soc. Am.41 (7), 447. Kennedy, B.M., Kharaka, Y.K., Evans, W.C., Ellwood, A., Depaolo, D.J., Thordsen, J., Ambats, G., Mariner, R.H., 1997. Mantle fluids in the San Andreas fault system, California. Science278, 1278–1281. Kennedy, B.M., van Soest, M.C., 2007. Flow of mantle fluids through the ductile lower crust: helium isotope trends. Science318, 1433–1436. Kennett, B.L.N., Salmon, M., Saygin, L., AusMoho Working Group, 2011. AusMoho: the variation of Moho depth in Australia. Geophys. J. Int.187, 946–958. Keppel, M., Karlstrom, K.E., Love, A.J., Priestley, S., Wohling, D., DeRitter, S., 2013. Hydrogeological Framework of the Western Great Artesian Basin. National Water Commission, Canberra, ISBN978-1-922136-06-0. Kigoshi, K., 1971. Alpha-recoil 234Th: dissolution into water and the 234U/238U dise-quilibrium in nature. Science173, 47–48. Krieg, G.W., Rodgers, P.A., Callen, R.A., Freeman P.J., Alley, N.F., Forbes, B.G., 1991. Curdimurka, South Australia 1:250000 Geological Map SH 53-8 Explanatory Notes. Geological Survey of South Australia, Adelaide. Kulongoski, J.T., Hilton, D.R., Izbicki, J.A., 2003. Helium isotopes studies in Mojave Desert, California: implications for ground-water chronology and regional seis-micity. Chem. Geol.202, 95–113. Kulongoski, J.T., Hilton, D.R., Izbicki, J.A., 2005. Source and movement of helium in the eastern Morongo groundwater basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim. Cosmochim. Acta69, 3857–3872. Love, A.J., Shand, P., Karlstrom, K.E., Crossey, L.J., Rousseau-Gueutin, P., Priestley, S., 2013. Geochemistry and travertine dating provide new insights into the hydro-geology of the Great Artesian Basin, South Australia. Proc. Earth Planet. Sci.7, 521–524. Lubetkin, L.K.C., Clark, M.M., 1988. Late Quaternary activity along the Lone Pine fault, eastern California. Geol. Soc. Am. Bull.100, 755–766. Ludwig, K.R., 2012. User’sManual for Isoplot/Ex: a Geochronological Toolkit for Mi-crosoft Excel, 70pp. Mardia, K.V., 1972. Statistics of Directional Data. Academic Press, London. Marrett, R., 1994. Scaling of intraplate earthquake recurrence interval with fault length and implications for seismic hazard assessment. Geophys. Res. Lett.21, 2637–2640. Marrett, R., Allmendinger, R.W., 1990. Kinematic analysis of fault-slip data. J. Struct. Geol.12, 973–986. Marty, B., Jambon, A., 1987. C/3He in volatile fluxes from the solid Earth: implica-tions for carbon geodynamics. Earth Planet. Sci. Lett.83, 16–26. Neumann, N., Sandiford, M., Foden, J., 2000. Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth Planet. Sci. Lett.183, 107–120. Nuriel, P., Rosenbaum, G., Uysal, I.T., Zhao, J-X., Golding, S.D., Weinberger, R., Karaba-cak, V., Avni, Y., 2011. Formation of fault-related calcite precipitates and their implications for dating fault activity in the East Anatolian and Dead Sea fault, zones. In: Geology of the Earthquake Source: A Volume in Honour of Rick Sib-son. In: Geological Society of London, Special Publication, vol.359, pp.229–248. O’Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen isotope fractionation in diva-lent metal carbonates. J. Chem. Phys.51, 5547–5558. Paul, E., Flöttmann, T., Sandiford, M., 1999. Structural geometry and controls on basement-involved deformation in the northern Flinders Ranges, Adelaide Fold Belt, South Australia. Aust. J. Earth Sci.46, 343–354. Petit, J.-P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. J. Struct. Geol.9, 597–608. Porcelli, D., 2008. Investigating groundwater processes using U-and Th-series nu-clides. Radioact. Environ.13, 105–153. Prescott, J.R., Habermehl, T.R., 2008. Luminescence dating of spring mound deposits in the southwestern Great Artesian Basin, northern South Australia. Aust. J. Earth Sci.55, 167–181. Priestley, K., Jackson, J., McKenzie, D., 2008. Lithospheric structure and deep earth-quakes beneath India, the Himalaya, and southern Tibet. Geophys. J. Int.172, 345–362. Ramsay, J.G., 1980. The crack–seal mechanism of rock deformation. Nature284, 135–139. Reynolds, S.D., Coblentz, D.D., Hillis, R.R., 2002. Tectonic forces controlling the re-gional intraplate stress field in continental Australia: results from new finite element modeling. J. Geophys. Res.107, 2131–2143. http://dx.doi.org/10.1029/2001JB000408. Ring, U., 2008. The tectonic evolution of the Franciscan subduction complex: impli-cations for the exhumation of high-pressure rocks in subduction-related accre-tionary wedges. Spec. Pap., Geol. Soc. Am.445. Ring, U., Gerdes, A., 2016. Kinematics of the Alpenrhein–Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics35. http://dx.doi.org/10.1002/2015TC004085. Sandiford, M., Quigley, M., 2009. TOPO-OZ: insights into the various modes of in-traplate deformation in the Australian continent. Tectonophysics474, 405–416. Sandiford, M., Wallace, M., Coblentz, D., 2004. Origin of the in situ stress field in southeastern Australia. Basin Res.16, 325–338. Shaw, R.D., Wellman, P., Gunn, P.J., Whitaker, A.J., Tarlowski, C., Morse, M.P., 1996. Guide to using the Australian crustal elements map. Australian Geological Sur-vey Organisation Record 1996/30. Sibson, R.H., 1990. Conditions for fault-valve behavior. Geol. Soc. (Lond.) Spec. Publ.54, 15–28. Sibson, R.H., 1995. Selective fault reactivation during basin inversion: potential for fluid redistribution through fault-valve action. In: Buchanan, J.G., Buchanan, P.G. (Eds.), Basin Inversion: Geological Society Special Publication, vol.88, pp.3–21. Sibson, R.H., 2005. Frictional mechanics of seismogenic thrust systems in the upper continental crust – implications for fluid overpressures and redistribution. AAPG Mem.82, 1–17. Siler, D.L., Kennedy, B.M., 2016. Regional crustal-scale structures as conduits for deep geothermal upflow. Geothermics59, 27–37. Suksi, J., Rasilainen, K., Marcos, N., 2006. In: Broder, J., Merkel, A., Hasche-Berger, K. (Eds.), Uranium in the Environment. Springer, Berlin, Heidelberg, pp.683–690. Sykes, L.R., 1978. Intraplate seismicity, reactivation of pre-existing zones of weak-ness, alkaline magmatism and other tectonism post-dating continental fragmen-tation. Rev. Geophys.16, 621–688. Teng, F.-Z., Rudnick, R.L., McDonough, W.F., Wu, F.-Y., 2009. Lithium isotopic system-atics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem. Geol.262, 415–424. Torgersen, T., Clarke, W.B., 1985. Helium accumulation in groundwater, I: an eval-uation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta49, 1211–1218. Ullman, W.J., Collerson, K.D., 1994. The Sr-isotope record of late quaternary hydro-logic changes around Lake Frome, South Australia. Aust. J. Earth Sci.41, 37–45. Ünal-˙Imer, E., Uysal, I.T., Zhao, J.-X., Isik, V., Shulmeister, J., Imer, A., Feng, Y., 2016. CO2outburst cycles in relation to seismicity: constraints from microscale geochronology and geochemistry of late Quaternary vein carbonates, SW Turkey. Geochim. Cosmochim. Acta187, 21–40. Uysal, I.T., Feng, Y., Zhao, J-X., Altunel, E., Weatherley, D., Karabacak, V., Cengiz, O., Golding, S.D., Collerson, K.D., 2007. U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth Planet. Sci. Lett.257, 450–462. Uysal, I.T., et al., 2011. Seismic cycles recorded in late Quaternary calcite veins:geochronological, geochemical and microstructural evidence. Earth Planet. Sci. Lett.303, 84–96. Waclawik, V.G., Lang, S.C., Krapf, C.B.E., 2008. Fluvial response to tectonic activity in an intra-continental dryland setting: the Neales River, Lake Eyre, Central Aus-tralia. Geomorphology102, 179–188. Walsh, J.J., Watterson, J., 1988. Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol.10, 239–247. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem.2, 203–215. Yardley, B.W.D., 1986. Fluid migration and veining in the Connemara Schists, Ireland. In: Walther, J.V., Wood, B.J. (Eds.), Fluid–Rock Interactions During Metamor-phism. Springer-Verlag, New York, pp.109–131. Zhao, J-X., Hu, K., Collerson, K.D., Xu, H., 2001. Thermal ionization mass spectrome-try U-series dating of a hominid site near Nanjing, China. Geology29, 27–30.en
dc.description.obiettivoSpecifico7T. Struttura della Terra e geodinamicaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorRing, Uween
dc.contributor.authorTonguç Uysal, I.en
dc.contributor.authorYuce, Galipen
dc.contributor.authorÜnal-İmer, Ezgien
dc.contributor.authorItaliano, Francescoen
dc.contributor.authorImer, Alien
dc.contributor.authorZhao, Jian-xinen
dc.contributor.departmentDepartment of Geological Sciences, Stockholm University, Swedenen
dc.contributor.departmentQueensland Geothermal Energy Centre of Excellence, The University of Queensland, Australiaen
dc.contributor.departmentDepartment of Geological Engineering, Hacettepe University, Ankara, Turkeyen
dc.contributor.departmentQueensland Geothermal Energy Centre of Excellence, The University of Queensland, Australia;dSchool of Geography, Planning & Environmental Management, The University of Queensland, Australiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDepartment of Geological Engineering, Middle East Technical University, Ankara, Turkeyen
dc.contributor.departmentDepartment of Geological Engineering, Middle East Technical University, Ankara, Turkeyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geological Sciences, Stockholm University, Sweden-
crisitem.author.deptQueensland Geothermal Energy Centre of Excellence, The University of Queensland, Australia-
crisitem.author.deptOsmangazi University – Department of Geology, Eskişehir Turkey-
crisitem.author.deptQueensland Geothermal Energy Centre of Excellence, The University of Queensland, Australia;dSchool of Geography, Planning & Environmental Management, The University of Queensland, Australia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDepartment of Geological Engineering, Middle East Technical University, Ankara, Turkey-
crisitem.author.deptDepartment of Geological Engineering, Middle East Technical University, Ankara, Turkey-
crisitem.author.orcid0000-0003-3347-9284-
crisitem.author.orcid0000-0002-2387-4283-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.orcid0000-0003-0305-7873-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Ring et al. EPSL.pdf4.52 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s)

64
checked on Apr 24, 2024

Download(s)

8
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric