Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11682
DC FieldValueLanguage
dc.date.accessioned2018-04-09T06:39:47Zen
dc.date.available2018-04-09T06:39:47Zen
dc.date.issued2017-02en
dc.identifier.urihttp://hdl.handle.net/2122/11682en
dc.description.abstractSpectral analysis of earthquake recordings provides fundamental seismological information. It is used for magnitude calculation, estimation of attenuation, and the determination of fault rupture properties including slip area, stress drop, and radiated energy. Further applications are found in site-effect studies and for the calibration of simulation and empirically based ground-motion prediction equations. We identified two main limitations of the spectral fitting methods currently used in the literature. First, the frequency-dependent noise level is not properly accounted for. Second, there are no mathematically defensible techniques to fit a parametric spectrum to a seismogram with gaps. When analyzing an earthquake recording, it is well known that the noise level is not the same at different frequencies, that is, the noise spectrum is colored. The different, frequency-dependent, noise levels are mainly due to ambient noise and sensor noise. Methods in the literature do not properly account for the presence of colored noise. Seismograms with gaps are usually discarded due to the lack of methodologies to use them. Modern digital seismograms are occasionally clipped at the arrival of the strongest ground motion. This is also critical in the study of historical earthquakes in which few seismograms are available and gaps are common, significantly decreasing the number of useful records. In this work, we propose a method to overcome these two limitations. We show that the spectral fitting can be greatly improved and earthquakes with extremely low signal-to-noise ratio can be fitted. We show that the impact of gaps on the estimated parameters is minor when a small fraction of the total energy is missing. We We also present a strategy to reconstruct the missing portion of the seismogram.en
dc.description.sponsorshipThis work was supported by the Swiss National Science Foundation project “Advanced Single Station and ArrayMethods for the Analysis of Ambient Vibrations and Earthquake Recording” (200021_153633).en
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Seismological Society of Americaen
dc.relation.ispartofseries/107 (2017)en
dc.subjectHistorical seismogramsen
dc.subjectcolored noiseen
dc.subjectIncomplete seismogramsen
dc.titleFitting Earthquake Spectra: Colored Noise and Incomplete Dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber276-291en
dc.identifier.doi10.1785/0120160030en
dc.relation.referencesAllen, T. I., P. R. Cummins, T. Dhu, and J. F. Schneider (2007). Attenuation of ground-motion spectral amplitudes in southeastern Australia, Bull. Seismol. Soc. Am. 97, no. 4, 1279–1292. Anderson, J. G., and S. E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high-frequencies, Bull. Seismol. Soc. Am. 74, no. 5, 1969–1993. Atkinson, G. M. (1993). Earthquake source spectra in eastern North America, Bull. Seismol. Soc. Am. 83, no. 6, 1778–1798. Atkinson, G.M. (2015). Ground motion prediction equation for small to moderate events at short hypocentral distances, with application to induced seismicity hazards, Bull. Seismol. Soc. Am. 105, no. 2A, 981–992. Boatwright, J. (1982). A dynamic model for far-field acceleration, Bull. Seismol. Soc. Am. 72, no. 4, 1049–1068. Boatwright, J., G. L. Choy, and L. C. Seekins (2002). Regional estimates of radiated seismic energy, Bull. Seismol. Soc. Am. 92, no. 4, 1241–1255. Boatwright, J., J. B. Fletcher, and T. E. Fumal (1991). A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-sized earthquakes, Bull. Seismol. Soc. Am. 81, no. 5, 1754–1782. Boore, D. M. (2003). Simulation of ground motion using the stochastic method, Pure Appl. Geophys. 160, nos. 3/4, 635–676. Boore, D. M.,W. B. Joyner, and L.Wennerberg (1992). Fitting the stochastic ω−2 source model to observed response spectra in western North America: Trade-offs between Δσ and κ, Bull. Seismol. Soc. Am. 82, no. 4, 1956–1963. Bora, S. S., F. Scherbaum, N. Kuehn, P. Stafford, and B. Edwards (2015). Development of a response spectral ground-motion prediction equation (GMPE) for seismic hazard analysis from empirical Fourier spectral and duration models, Bull. Seismol. Soc. Am. 105, no. 4, 2192–2218. Brune, J. N. (1970). Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, no. 26, 4997–5009. Čadek, O. (1987). Studying earthquake ground motion in Prague from Wiechert seismograph records, Gerland Beitr. Geophys. 96, no. 5, 438–447. Cauzzi, C., and J.Clinton (2013).Ahigh- and low-noisemodel for high-quality strong-motion accelerometer stations, Earthq. Spectra 29, no. 1, 85–102. Cotton, F., R. Archuleta, and M. Causse (2013). What is sigma of the stress drop? Seismol. Res. Lett. 84, no. 1, 42–48. Douglas, J., B. Edwards, V. Convertito, N. Sharma, A. Tramelli, D. Kraaijpoel, B. M. Cabrera, N. Maercklin, and C. Troise (2013). Predicting ground motion from induced earthquakes in geothermal areas, Bull. Seismol. Soc. Am. 103, no. 3, 1875–1897. Douglas, J., P. Gehl, L. F. Bonilla, and C. Gélis (2010). A kappa model for mainland France, Pure Appl. Geophys. 167, no. 11, 1303–1315. Drouet, S., S. Chevrot, F. Cotton, and A. Souriau (2008). Simultaneous inversion of source spectra, attenuation parameters and site responses. Application to the data of the French Accelerometric Network, Bull. Seismol. Soc. Am. 98, no. 1, 198–219. Edwards, B., and D. Fäh (2013). Measurements of stress parameter and site attenuation from recordings of moderate to large earthquakes in Europe and the Middle East, Geophys. J. Int. 194, no. 2, 1190–1202. Edwards, B., B. Allmann, D. Fäh, and J. Clinton (2010). Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude, Geophys. J. Int. 183, no. 1, 407–420. Edwards, B., D. Fäh, and D. Giardini (2011). Attenuation of seismic shear wave energy in Switzerland, Geophys. J. Int. 185, no. 2, 967–984. Edwards, B., T. Kraft, C. Cauzzi, P. Kästli, and S. Wiemer (2015). Seismic monitoring and analysis of deep geothermal projects in St. Gallen and Basel, Switzerland, Geophys. J. Int. 201, no. 2, 1020–1037. Edwards, B., C. Michel, V. Poggi, and D. Fäh (2013). Determination of site amplification from regional seismicity: Application to the Swiss National Seismic Networks, Seismol. Res. Lett. 84, no. 4, 611–621. Edwards, B., A. Rietbrock, J. J. Bommer, and B. Baptie (2008). The acquisition of source, path, and site effects from microearthquake recordings using Q tomography: Application to the United Kingdom, Bull. Seismol. Soc. Am. 98, no. 4, 1915–1935. Goertz-Allmann, B. P., and B. Edwards (2014). Constraints on crustal attenuation and three-dimensional spatial distribution of stress drop in Switzerland, Geophys. J. Int. 196, no. 1, 493–509. Gohberg, I., and V. Olshevsky (1994). Fast algorithms with preprocessing for matrix-vectormultiplication problems, J. Complexity 10, no. 4, 411–427. Hanks, T. C., and R. K. Mcguire (1981). The character of high-frequency strong ground motion, Bull. Seismol. Soc. Am. 71, no. 6, 2071–2095. Harrington, R. M., and E. E. Brodsky (2009). Smooth, mature faults radiate more energy than rough, immature faults in Parkfield, CA, Bull. Seismol. Soc. Am. 99, no. 4, 2323–2334. Hough, S. E., J. M. Lees, and F. Monastero (1999). Attenuation and source properties at the Coso Geothermal Area, California, Bull. Seismol. Soc. Am. 89, no. 6, 1606–1619. Kschischang, F. R., B. J. Frey, and H.-A. Loeliger (2001). Factor graphs and the sum-product algorithm, IEEE Trans. Inform. Theor. 47, no. 2, 498–519. Ktenidou, O.-J., C. Gélis, and L.-F. Bonilla (2013). A study on the variability of kappa (κ) in a borehole: Implications of the computation process, Bull. Seismol. Soc. Am. 103, no. 2A, 1048–1068. Loeliger, H.-A., J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang (2007). The factor graph approach to model-based signal processing, Proc. IEEE 95, no. 6, 1295–1322. Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci. 39, no. 2, 447–462. Madariaga, R. (1976). Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am. 66, no. 3, 639–666. Monahan, J. F. (2011). Numerical Methods of Statistics, Cambridge University Press, New York, New York, 447 pp. Oth, A., D. Bindi, S. Parolai, and D. D. Giacomo (2011). Spectral analysis of K-NET and KiK-net data in Japan, Part II: On attenuation characteristics, source spectra, and site response of borehole and surface stations, Bull. Seismol. Soc. Am. 101, no. 2, 667–687. Ottemoller, L., and J. Havskov (2003). Moment magnitude determination for local and regional earthquakes based on source spectra, Bull. Seismol. Soc. Am. 93, no. 1, 203–214. Raoof, M., R. B. Herrmann, and L. Malagnini (1999). Attenuation and excitation of three-component ground motion in southern California mainland, Bull. Seismol. Soc. Am. 89, no. 4, 888–902. Rietbrock, A., F. Strasser, and B. Edwards (2013). A stochastic earthquake ground motion prediction model for the United Kingdom, Bull. Seismol. Soc. Am. 103, no. 1, 57–77. Savage, J. C. (1972). Relation of corner frequency to fault dimensions, J. Geophys. Res. 77, no. 20, 3788–3795. Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J. 263, 835–853. Vannoli, P., G. Vannucci, F. Bernardi, B. Palombo, and G. Ferrari (2015). The source of the 30 October 1930 Mw 5.8 Senigallia (Central Italy) earthquake: A convergent solution from instrumental, macroseismic, and geological data, Bull. Seismol. Soc. Am. 105, no. 3, 1548–1561.en
dc.description.obiettivoSpecifico4T. Sismologia, geofisica e geologia per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorMaranò, Stefanoen
dc.contributor.authorEdwards, Benjaminen
dc.contributor.authorFerrari, Grazianoen
dc.contributor.authorFäh, Donaten
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptSwiss Seismological Service (SED-ETHZ), Zürich, Switzerland-
crisitem.author.orcid0000-0002-5813-578X-
crisitem.author.orcid0000-0001-7383-2359-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MaranòEdwardsFerrarriFae_2017.pdf2.08 MBAdobe PDF
SoftwareMaranò&Al2017.pdf442.86 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s)

105
checked on Apr 24, 2024

Download(s)

65
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric