Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11655
DC FieldValueLanguage
dc.date.accessioned2018-04-05T10:30:55Zen
dc.date.available2018-04-05T10:30:55Zen
dc.date.issued2018-02en
dc.identifier.urihttp://hdl.handle.net/2122/11655en
dc.description.abstractThe application of a physics-based earthquake simulation algorithm to the Central Apennines, where the 2016-2017 seismic sequence occurred, allowed the compilation of a synthetic seismic catalog lasting 100 kyr, and containing more than 500,000 M ≥ 4.0 events, without limitations in terms of completeness, homogeneity and time duration. This simulator is based on an algorithm constrained by several faulting and source parameters. The seismogenic model upon which we applied the simulator code, was derived from the Database of Individual Seismogenic Sources including all the fault systems that are recognized in the Central Apennines. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with the observations. These features include long-term periodicity and a realistic earthquake magnitude distribution. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.4-0.8. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedance probability of given values of peak acceleration (PGA) in the investigated territory.en
dc.language.isoEnglishen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/212 (2018)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectNumerical modellingen
dc.subjectEarthquake simulatoren
dc.subjectStatistical methodsen
dc.subjectEarthquake hazardsen
dc.subjectCentral Apenninesen
dc.titleThe seismicity of the Central Apennines (Italy) studied by means of a physics-based earthquake simulatoren
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber916-929en
dc.identifier.URLhttps://academic.oup.com/gji/article/212/2/916/4555380en
dc.subject.INGV04.06. Seismologyen
dc.identifier.doi10.1093/gji/ggx451en
dc.relation.referencesBasili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M.M. & Boschi, E., 2008. The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology, Tectonophysics, 453(1-4), 20-53, doi:10.1016/j.tecto.2007.04.014. Console, R., Carluccio, R., Papadimitriou, E. & Karakostas, V., 2015. Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system, J. Geophys. Res., 120(1), 326-343, doi:10.1002/2014JB011765. Console, R., Nardi, A., Carluccio, R., Murru, M., Falcone, G. & Parsons, T., 2017. A physics-based earthquake simulator and its application to seismic hazard assessment in Calabria (Southern Italy) region, Acta Geophys., 65, 243-257, doi:10.1007/s11600-017-0020-2. De Santis, A., Cianchini, G. & Di Giovambattista, R., 2015. Accelerating moment release revisited: examples of application to Italian seismic sequences, Tectonophysics, 639, 82-98, 10.1016/j.tecto.2014.11.015 Cornell, C.A., 1968. Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606. DISS Working Group, 2015. Database of Individual Seismogenic Sources (DISS), Version 3.2.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia, doi:10.6092/INGV.IT-DISS3.2.0. Field, E.H., 2015. Computing Elastic-Rebound-Motivated Earthquake Probabilities in Unsegmented Fault Models: A New Methodology Supported by Physics-Based Simulators, Bull. Seism. Soc. Am., 105(2A), 544-559, doi:10.1785/0120140094. Galli, P., Peronace, E., Bramerini, F., Castenetto, S., Naso, G., Cassone, F. & Pallone, F., 2016. The MCS intensity distribution of the devastating 24 August 2016 earthquake in central Italy (MW 6.2), Ann. Geophys., 59(5), doi:10.4401/ag-7287. ISIDe Working Group, 2016. ISIDe, Italian Seismological Instrumental and parametric Database, version 1.0, doi:10.13127/ISIDe. Kagan, Y.Y., Jackson, D.D. & Geller R.J., 2012. Characteristic Earthquake Model, 1884-2011, R.I.P., Seism. Res. Lett., 83(6), doi:10.1785/0220120107. Kastelic, V., Vannoli, P., Burrato, P., Fracassi, U., Tiberti, M.M. & Valensise, G., 2013. Seismogenic sources in the Adriatic Domain, Mar. Petrol. Geol., 42, 191-213, doi:10.1016/j.marpetgeo.2012.08.002. Maesano, F.E., Toscani, G., Burrato, P., Mirabella, F., D'Ambrogi, C. & Basili, R., 2013. Deriving thrust fault slip rates from geological modeling: Examples from the Marche coastal and offshore contraction belt, northern Apennines, Italy, Mar. Petrol. Geol., 42, 122-134, doi:0.1016/j.marpetgeo.2012.10.008. Parsons, T., 2002. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis. J. Geophys. Res., 107, B8, 10.1029/2001JB001051. Rovida, A., Locati, M. Camassi, R. Lolli, B. & Gasperini, P., (eds), 2016. CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes, Istituto Nazionale di Geofisica e Vulcanologia, doi:10.6092/INGV.IT-CPTI15. Sabetta, F. & Pugliese, A., 1987. Attenuation of peak horizontal acceleration and velocity from Italian strong motion records, Bull. Seism. Soc. Am., 77, 1491-1513. Schultz, K.W., Yoder, M.R., Wilson, J.M., Heien, E.M., Sachs, M.K., Rundle, J.B. & Turcotte, D.L. 2017. Parametrizing phyisics-based earthquake simulations, Pure Appl. Geophys., 174, 2269-2278, doi:10.1007/s00024-016-1428-3. Tertulliani, A. & Azzaro R., 2016. QUEST - Rilievo macrosismico per i terremoti nell’Italia centrale. Aggiornamento dopo le scosse del 26 e 30 ottobre 2016, INGV Internal Report, Roma, doi:10.5281/zenodo.182694. Tullis, T.E., 2012. Preface to the Focused Issue on Earthquake Simulators, Seism. Res. Lett., 83(6), 957-958, doi:10.1785/0220120122. Valensise, G. & Pantosti, D., 2001. The investigation of potential earthquake sources in peninsular Italy: a review, J. Seismol., 5(3), 287-306. Vannoli, P., Burrato, P., Fracassi, U. & Valensise G., 2012. A fresh look at the seismotectonics of the Abruzzi (Central Apennines) following the 6 April 2009 L'Aquila earthquake (Mw 6.3), Ital. J. Geosci., 131(3), 309-329, doi:10.3301/IJG.2012.03. Vannoli, P., Vannucci, G., Bernardi, F., Palombo, B. & Ferrari G., 2015. The source of the 30 October 1930, Mw 5.8, Senigallia (central Italy) earthquake: a convergent solution from instrumental, macroseismic and geological data, B. Seismol. Soc. Am., 105(3), 1548-1561, doi:10.1785/0120140263. Vere-Jones, D., 1969. A note on the statistical interpretation of Bath's Law. Bull. Seism. Soc. Am., 59, 4, 1535-1541. Vezzani, L. & Ghisetti, F., 1998. Carta geologica dell’Abruzzo. Scale 1:100,000, S.EL.CA., Firenze. Wells, D.L. & Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974-1002. Wilson, J.M., Yoder, M.R., Rundle, J.B., Turcotte, D.L. & Schultz, K.W., 2017. Spatial evaluation and verification of earthquake simulators. Pure Appl. Geophys., 174, 2279-2293, doi:10.1007/s00024-016-1385-x.en
dc.description.obiettivoSpecifico5T. Sismologia, geofisica e geologia per l'ingegneria sismicaen
dc.description.obiettivoSpecifico6T. Studi di pericolosità sismica e da maremotoen
dc.description.journalTypeJCR Journalen
dc.contributor.authorConsole, Rodolfoen
dc.contributor.authorVannoli, Paolaen
dc.contributor.authorCarluccio, Robertoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-7199-0388-
crisitem.author.orcid0000-0003-4344-0965-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Console_etal_2018.docxManuscript1.88 MBMicrosoft Word XMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s)

464
checked on Apr 17, 2024

Download(s)

77
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric