Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11646
DC FieldValueLanguage
dc.date.accessioned2018-04-05T09:33:40Zen
dc.date.available2018-04-05T09:33:40Zen
dc.date.issued2018-02-01en
dc.identifier.urihttp://hdl.handle.net/2122/11646en
dc.description.abstractThis paper aims at assessing the influence of environmental parameters on the modal characteristics of age–old masonry constructions. The results of a long–term ambient vibration monitoring of the San Frediano bell tower in Lucca (Italy) are reported. The tower, dating back to the 11th century, has been fitted along its height with four triaxial seismometric stations, which were left active for about one year. Data from the monitoring system have been processed via the Stochastic Subspace Identification Method in order to identify the tower’s modal characteristics and their variations over the year. The dependence of the tower’s frequencies on the ambient temperature was first studied and simulated via simple auto–regressive models. Then, some output–only models based on the principal component analysis (PCA) were applied, under the hypotheses of both linear and nonlinear (Kernel PCA) dependence of the natural frequencies on the unknown environmental parameters. The results indicate PCA to be an effective tool for detecting changes in the dynamic characteristics of masonry constructions.en
dc.description.sponsorshipThis research has been partially supported by the Region of Tuscany (Project “MOSCARDO - ICT technologies for structural monitoring of age-old constructions based on wireless sensor networks and drones”, 2016-2018).en
dc.language.isoEnglishen
dc.publisher.nameElsevier Ltd.en
dc.relation.ispartofEngineering Structuresen
dc.relation.ispartofseries/156 (2018)en
dc.subjectMasonry towersen
dc.subjectStructural health monitoringen
dc.subjectStochastic subspace identification methoden
dc.subjectEnvironmental variabilityen
dc.subjectExperimental modelsen
dc.subjectPrincipal component analysisen
dc.titleThe influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Luccaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber175-187en
dc.subject.INGVSeismology for enineeringen
dc.identifier.doi10.1016/j.engstruct.2017.10.045en
dc.relation.references[1] Azzara RM, De Roeck G, Girardi M, Padovani C, Pellegrini D, Reynders E. Assessment of the dynamic behaviour of an ancient masonry tower in Lucca via ambient vibrations. In: Van Balen Koen, Verstrynge Els, editors. Structural analysis of historical constructions. anamnesis, diagnosis, therapy, controls, Taylor & Francis Group, 2016, Print ISBN: 978-1-138-02951-4 eBook ISBN: 978-1-317-20662-0. [2] Azzara RM, Zaccarelli L, Morelli A, Trombetti T, Dallavalle G, Cavaliere A, et al. Seismic moni-toring of the Asinelli and Garisenda medioeval towers in Bologna (Italy), an instrumental contribution to the engi-neering modeling direct to their protection. In: Mazzolani FM, Altay G, editors. Proceedings of the second interna- tional conference on protection of historical constructions – PROHITECH 2014, Bogaziçi University Publishing, 2014. [3] Bendat JS, Piersol AG. Random data: analysis and measurement procedures, 4th ed., 2010. ISBN 978-0-470-24877-5. [4] Binante V, Girardi M, Padovani C, Pasquinelli G, Pellegrini D, Porcelli M, et al. NOSA-ITACA 1.1 documentation 2017. <www.nosaitaca.it/software/>. [5] Gentile C, Saisi A. Ambient vibration testing of historic masonry towers for struc- tural identification and damage assessment. Constr Build Mater 2007;21(6):1311–21. [6] Gentile C, Saisi A, Cabboi A. Dynamic monitoring of a masonry tower. In: Proceedings of the 8th international conference on structural analysis of historical constructions, SAHC 2012, 2012. [7] Gentile C, Guidobaldi M, Saisi A. One-year dynamic monitoring of a historic tower: damage detection under changing environment. Meccanica 2016;51(11):2873–89. [8] Heyman J, Threlfall BD. Inertia forces due to bell ringing. Int J Mech Sci 1976;18:161–4. [9] Hoffmann H. Kernel PCA for novelty detection. Pattern Recogn 2007;40(3):863–74. [10] Ivorra S, Pallares FJ. Dynamic investigations on a masonry bell tower. Eng Struct 2006;28:660–7. [11] Ljung L. System identification: theory for the user. 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall; 1999.[12] Lucchesi M, Padovani C, Pasquinelli G, Zani N. Masonry constructions: mechanical models and numerical applications. Lecture notes in applied and computational mechanics, vol. 39. Springer-Verlag; 2008. [13] Maia NMM, Silva JMM, editors. Theoretical and experimental modal analysis. Baldock, Hertfordshire, England: Research Studies Press Ltd.; 1997. [14] Peeters B, De Roeck G. One–year monitoring of the Z24–Bridge: enviromental ef- fects versus gamage events. Earthquake Eng Struct Dynam 2001;30:149–71. [15] Peeters B, De Roeck G. Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 1999;13(6):855–78. [16] Porcelli M, Binante V, Girardi M, Padovani C, Pasquinelli G. A solution procedure for constrained eigenvalue problems and its application within the structural finite- element code NOSA–ITACA. Calcolo 2015;52(2):167–86. Springer Milan. [17] Ramos LF, Marques L, Lourenço PB, De Roeck G, Campos-Costa A, Roque J. Monitoring historical masonry structures with operational modal analysis: two case studies. Mech Syst Signal Process 2010;24:1291–305. [18] Reynders E. System identification methods for (operational) modal analysis: review and comparison. Arch Comput Methods Eng 2012;19:51–124. [19] Reynders E, Pintelon R, De Roeck G. Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech Syst Signal Process 2008;22(4):948–69. [20] Reynders E, Schevenels M, De Roeck G. Macec 3.3. A Matlab toolbox for experi- mental and operational modal analysis. <http://bwk.kuleuven.be/bwm/macec/ >; 2014. [21] Reynders E, Wursten G, De Roeck G. Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification. Struct Health Monit 2014;13(1):82–93. [22] Reynders E, Maes K, Lombaert G, De Roeck G. Uncertainty quantification in op- erational modal analysis with stochastic subspace identification: Validation and applications. Mech Syst Signal Process 2016;66-67:13–30. [23] Saisi A, Gentile C, Guidobaldi M. Post–earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy. Constr Build Mater 2015;81:101–12. [24] Schoelkopf B, Smola A, Mueller KR. Nonlinear component analysis as a kernel ei- genvalue problem. Neural Comput 1998;10(5):1299–319. [25] Selby AR, Wilson JM. The dynamics of masonry bell towers. In: Bull JW, editor. Computational modelling of masonry, brickwork and blockwork structures. Saxe- Coburg Publications; 2001. [26] Tsogka C, Daskalakis E, Comanducci G, Ubertini F. The stretching method for vi- bration–based structural health monitoring of civil structures. Comput–Aided Civ Infrastruct Eng 2017;32(4):288–303. [27] Ubertini F, Comanducci G, Cavalagli N. Vibration–based structural health mon- itoring of a historic bell–tower using output–only measurements and multivariate statistical analysis. Struct Health Monit 2016;15(4):438–57. SAGE. [28] Ubertini F, Comanducci G, Cavalagli N, Pisello N, Materazzi AL, Cotana F. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mecha Syst Signal Process 2017;82:307–22.en
dc.description.obiettivoSpecifico5T. Sismologia, geofisica e geologia per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorAzzara, Riccardo Marioen
dc.contributor.authorDe Roeck, Guidoen
dc.contributor.authorGirardi, Mariaen
dc.contributor.authorPadovani, Cristinaen
dc.contributor.authorPellegrini, Danieleen
dc.contributor.authorReynders, Edwinen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentKU Leuven, Department of Civil Engineering, Leuven, Belgiumen
dc.contributor.departmentInstitute of Information Science and Technologies ”A. Faedo”, ISTI–CNR, Pisa, Italyen
dc.contributor.departmentInstitute of Information Science and Technologies ”A. Faedo”, ISTI–CNR, Pisa, Italyen
dc.contributor.departmentInstitute of Information Science and Technologies ”A. Faedo”, ISTI–CNR, Pisa, Italyen
dc.contributor.departmentKU Leuven, Department of Civil Engineering, Leuven, Belgiumen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptKU Leuven, Department of Civil Engineering, Leuven, Belgium-
crisitem.author.deptInstitute of Information Science and Technologies ”A. Faedo”, ISTI–CNR, Pisa, Italy-
crisitem.author.deptInstitute of Information Science and Technologies ”A. Faedo”, ISTI–CNR, Pisa, Italy-
crisitem.author.deptInstitute of Information Science and Technologies ”A. Faedo”, ISTI–CNR, Pisa, Italy-
crisitem.author.deptKU Leuven, Department of Civil Engineering, Leuven, Belgium-
crisitem.author.orcid0000-0002-0345-9568-
crisitem.author.orcid0000-0002-3416-771X-
crisitem.author.orcid0000-0002-1042-0282-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1-s2.0-S0141029617309574-main.pdf7.11 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

30
checked on Feb 10, 2021

Page view(s)

288
checked on Apr 24, 2024

Download(s)

7
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric