Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1156
DC FieldValueLanguage
dc.contributor.authorallZmazek, B.; J. Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallZivcic, M.; Environmental Agency of the Republic of Slovenia, Office of Seismology, Dunajska 47/VII, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallVaupotic, J.; J. Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallKobal, I.; J. Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallMartinelli, G.; Servizio Sistemi Informativi Geografici, Viale Silvani 4/3, 40122 Bologna, Italyen
dc.date.accessioned2006-05-15T13:26:05Zen
dc.date.available2006-05-15T13:26:05Zen
dc.date.issued2002en
dc.identifier.urihttp://hdl.handle.net/2122/1156en
dc.description.abstractThermally anomalous fluids released in seismic areas in Slovenia were the subjects of geochemical monitoring. Thermal waters were surveyed from the seismically active area of Poso$cje (Bled and Zatolmin; NW Slovenia) and from Rogaska Slatina in eastern Slovenia. Continuous monitoring of geochemical parameters (radon concentration, electrical conductivity, and water temperature) was performed with discrete gas sampling for their 3He/4He ratio. The observed values were correlated with meteorological parameters (rainfall, barometric pressure and air temperature) and with seismic activity. Only a few earthquakes occurred in the vicinity of the measuring sites during the monitoring period. Nevertheless, changes in radon concentration, water temperature, electrical conductivity and helium isotopic ratio were detected at the three thermal springs in the periods preceding the earthquakes. A close correlation was also observed of both water temperature and electrical conductivity with the Earth tide, making the observations in the selected sites a promising tool for addressing the widely debated question of earthquake prediction.en
dc.description.sponsorshipMinistry of Education,Science and Sport of Sloveniaen
dc.format.extent539 bytesen
dc.format.extent482322 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofApplied Radiation and Isotopesen
dc.relation.ispartofseries57 (2002)en
dc.subjectSeismicityen
dc.subjectThermal watersen
dc.subjectGeochemistryen
dc.titleGeochemical monitoring of thermal waters in Slovenia: relationships to seismic activityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber919–930en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamicsen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.relation.referencesBella, F., Biagi, P.F., Caputo, M., Cozzi, E., Della Monica, G.,Ermini, A., Gordeez, E.I., Khatkevich, Y.M., Martinelli, G., Plastino, W., Scandone, R., Sgrigna, V., Zilpimiani, D., 1998. Hydrochemical anomalies in Kamchatka (Russia).Phys. Chem. Earth 23, 921–925. Birchard, G.F., Libby, W.F., 1976. An inexpensive radon earthquake prediction concept. EOSTrans. Am. Geophys. Union 57, 957 (Abstract). Birchard, G.F., Libby, W.F., 1977. Gas phase radon anomalies. EOSTrans. Am. Geophys. Union 58, 1195–1196. Birchard, G.F., Libby, W.F., 1980. Soil radon concentration changes preceding and following four magnitude 4.2–4.7 earthquakes on Jan Jacinto Fault in south California. J. Geophys. Res. 80, 3100–3106. Delcourt-Honorez, M., Ducarme, B., Van Ruymbeke, M., 1993. Earth tides as related to groundwater and barometric pressure. In: 12th International Symposium on the Earth Tide, 4–7 August, Beijing, China, unpublished. Dobrovolsky, I.P., Gersherzon, N.I., Gokhberg, M.B., 1989. Theory of electrokinetic effect occurring at the final state in the preparation of a tectonic earthquake. Phys. Earth Planet Interiors 57, 144–156. Dongarra, G., Martinelli, G., 1995. Migration process of radon towards the Earth’s surface: implications for the prediction of seismic and volcanic events. In: Proceedings of the Scientific Meeting on Seismic Protection, Regione Veneto, Venezia, pp. 141–147. Favara, R., Italiano, F., Martinelli, G., 2001. Earthquakeinduced chemical changes in thermal waters of Umbria region during the 1997–1998 seismic swarm. Terra Nova 13, 227–233. Fitterman, D., 1981. Correction to theory of electrokinetic–magnetic anomalies in a faulted half-space. J. Geophys. Res. 86, 9585–9588. Hauksson, E., Goddard, J.G., 1981. Radon earthquake precursor studies in Iceland. J. Geophys. Res. 86,7037–7054. Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M., Sano, Y., 1995. Groundwater radon anomaly before the Kobe earthquake in Japan. Science 269, 60–61. Italiano, F., Martinelli, G., Nuccio, P.M., 2001a. Anomalies of mantle-derived helium during 1997–1998 seismic swarm of Umbria-Marche, Italy. Geophys. Res. Lett. 28,839–842. Italiano, F., Martelli, M., Martinelli, G., Paternoster, M., Nuccio, P.M., 2001b. Geochemical modeling of earthquakerelated anomalies in fluids of Val d’Agri (Southern Italy). Terra Nova 13, 249–257. King, C.Y., 1978. Radon emanation on San Andreas Fault. Nature 271, 516–519. King, C.Y., 1985. Radon monitoring for earthquake prediction in China. Earthquake Pred. Res. 3, 47–68. King, C.-Y., 1986. Gas geochemistry applied to earthquake prediction: an overview. J. Geophys. Res. 91 (B12), 12269–12281. King, C.Y., Zhang, W., King, B.S., 1993. Radon anomalies on three kinds of faults in California. Pure Appl. Geophys. 141,111–124. Kumpel, H.J., 1997. Tides in water saturated rock. In: Wilhelm, H., Zurn, W., Wenzel, H.G. (Eds.), Tidal Phenomena. Springer, Berlin, pp. 277–291. Mizutani, H., Ishido, T., 1976. A new interpretation of magnetic field variation associated with the Matsushiro earthquakes. J. Geomagn. Geoelectron. 28, 179–188. Mogro-Campero, A., Fleischar, R.L., Likes, R.S., 1980. Changes in subsurface radon concentration associated with earthquake. J. Geophys. Res. 85, 3053–3057. O’Neil, J.R., King, C.Y., 1981. Variations in stable isotope ratios on groundwaters in seismically active regions of California. Geophys. Res. Lett. 8, 429–432. Poljak, M., Zivcic, M., Zupancic, P., 2000. The seismotectonic characteristics of Slovenia. Pure Appl. Geophys. 157, 37–55. Ribaric, V., 1979. The Idrija earthquake of March 26, 1511. Tectonophysics 53, 315–324. Sadovsky, M.A., Nersesov, I.L., Nigmatullaev, S.K., Latynina, L.A., Lukk, A.A., Semenov, A.N., Simbereva, I.G.,Ulomov, V.I., 1972. The processes preceding strong earthquakes in some regions of Middle Asia. Tectonophysics 14, 195–307. Shapiro, M.H., Melvin, J.D., Copping, N.A., Tombrello, T.A., Whitecomb, J.H, 1980. Automated radon–thoron monitoring for earthquake prediction research. In: Gesell, T.F.,Lowder, W.M. (Eds.), Proceeding of the Natural Radiation Environment III, USDepartment of Energy, Vol. 1,pp. 137–153. Sugisaki, R., 1981. Deep-seated gas emission induced by the earth tide: a basic observation for geochemical earthquake prediction. Science 212, 1264–1266. Sugisaki, R., Anno, H., Aedachi, M., Ui, H., 1980. Geochemical features of gases and rocks along active faults. Geochem. J. 14, 101–112. Teng, T.L., 1980. Some recent studies on groundwater radon content as an earthquake precursor. J. Geophys. Res. 85, 3089–3099. Thomas, D., 1988. Geochemical precursors to seismic activity. Pure Appl. Geophys. 126, 241–265. Toutain, J.P., Baubron, J.C., 1999. Gas geochemistry and seismotectonics: a review. Tectonophysics 304, 1–24. Toutain, J.P., Mounoz, M., Poitrasson, F., Lienard, A.C., 1997. Springwater chloride ion anomaly prior to a ML=5.2 Pyrenean earthquake. Earth Planet. Sci. Lett. 149,113–119. Ulomov, V.I., Mavashev, B.Z., 1971. Forerunners of the Tashkent earthquake. Izv. Akad. Nauk Uzb. SSR, 188–200. Vauterin, P., Van Camp, M., 2001. Tsoft Software, Vol. 2.0.2. Royal Observatory of Belgium, Bruxelles. Wakita, H., Nakamura, Y., Notsu, K., Naguchi, M., Asada, T.,1980. A possible precursor of the 1978 Izu–Oshima–Kinkai Earthquake. Science 207, 882–883. Zivcic, M., Cecic, I., 1998. Revised magnitudes of historical earthquakes in Slovenia. In: The EGS XXXII General Assembly, Nice, France, 20–24 April, 1998. Zivcic, M., Cecic, I., Gosar, A., Zupanic, P., 1999. The Earthquake on April 12, 1998 in the upper So$ca Territory—Basic characteristics. In: Lapajne, J.K. (Ed.), Earthquakes in 1998, URSG (Uprava Republike Slovenije zageofiziko), Ljubljana, pp. 49–64 (in Slovene). Zmazek, B., Vaupotic, J., Zivcic, M., Premru, U., Kobal, I., 2000. Radon monitoring for earthquake prediction in Slovenia. Fiz. B (Zagreb) 9, 111–118. Zmazek, B., Vaupotic, J., Zivcic, M., Martinelli, G., Italiano, F., Kobal, I., 2000b. Radon, temperature, electrical conductivity and 3He/4He measurements in three thermal springs in Slovenia. In: Book of Abstract of Second Dresden Symposium on Radiation Protection, September 10–14,2000, Dresden, Germany. Zmazek, B., Zivcic, M., Vaupotic, J., Bidovec, M., Poljak, M.,Kobal, I., 2002. Soil radon monitoring in the Krsko basin, Slovenia. Appl. Radiat. Isot. 56, 649–657.en
dc.description.fulltextpartially_openen
dc.contributor.authorZmazek, B.en
dc.contributor.authorItaliano, F.en
dc.contributor.authorZivcic, M.en
dc.contributor.authorVaupotic, J.en
dc.contributor.authorKobal, I.en
dc.contributor.authorMartinelli, G.en
dc.contributor.departmentJ. Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentEnvironmental Agency of the Republic of Slovenia, Office of Seismology, Dunajska 47/VII, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentJ. Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentJ. Stefan Institute, Jamova 39, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentServizio Sistemi Informativi Geografici, Viale Silvani 4/3, 40122 Bologna, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptJ. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptARSO-
crisitem.author.deptJozef Stefan Institute, Ljubljana, Slovenia-
crisitem.author.deptJ. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptARPA Emilia-Romagna-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Zmazek et al., Appl. Rad. Isot. 2002.pdfMain article471.02 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

Page view(s) 5

450
checked on Mar 27, 2024

Download(s)

122
checked on Mar 27, 2024

Google ScholarTM

Check