Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11518
DC FieldValueLanguage
dc.date.accessioned2018-03-26T08:54:43Zen
dc.date.available2018-03-26T08:54:43Zen
dc.date.issued2018-03-12en
dc.identifier.urihttp://hdl.handle.net/2122/11518en
dc.description.abstractPyroclastic density currents (PDCs) can have devastating impacts on urban settlements, due to their dynamic pressure and high temperatures. Our degree of understanding of the interplay between these hot currents and the affected infrastructures is thus fundamental not only to implement our strategies for risk reduction, but also to better understand PDC dynamics. We studied the temperature of emplacement of PDC deposits that destroyed and buried the Villa dei Papiri, an aristocratic Roman edifice located just outside the Herculaneum city, during the AD79 plinian eruption of Mt Vesuvius (Italy) by using the thermal remanent magnetization of embedded lithic clasts. The PDC deposits around and inside the Villa show substantial internal thermal disequilibrium. In areas affected by convective mixing with surface water or with collapsed walls, temperatures average at around 270◦C (min 190◦C, max 300◦C). Where the deposits show no evidence of mixing with external material, the temperature is much higher, averaging at 350◦C (min 300◦C; max 440◦C). Numerical simulations and comparison with temperatures retrieved at the very same sites from the reflectance of charcoal fragments indicate that such thermal disequilibrium can be maintained inside the PDC deposit for time-scales well over 24 hours, i.e. the acquisition time of deposit temperatures for common proxies. We reconstructed in detail the history of the progressive destruction and burial of Villa dei Papiri and infer that the rather homogeneous highest deposit temperatures (average 350◦C) were carried by the ash-sized fraction in thermal equilibrium with the fluid phase of the incoming PDCs. These temperatures can be lowered on short time-(less than hours) and length-scales (meters to tens of meters) only where convective mixing with external materials or fluids occurs. By contrast, where the Villa walls remained standing the thermal exchange was only conductive and very slow, i.e. negligible at 50 cm distance from contact after 24 hours. We then argue that the state of conservation of materials buried by PDC deposits largely depends on the style of the thermal interactions. Here we also suggest that PDC deposit temperatures are excellent proxies for the temperatures of basal parts of PDCs close to their depositional boundary layer. This general conclusion stresses the importance of mapping of deposit temperatures for the understanding of thermal processes associated with PDC flow dynamics and during their interaction with the affected environment.en
dc.language.isoEnglishen
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/490 (2018)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectpyroclastic density currenten
dc.subjecttemperature hazarden
dc.subjectVesuviusen
dc.subjectHerculaneumen
dc.subjectpaleomagnetismen
dc.subjectplinian eruptionen
dc.titleThermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber180-192en
dc.subject.INGV04.04. Geologyen
dc.subject.INGV04.08. Volcanologyen
dc.subject.INGV05.08. Risken
dc.identifier.doi10.1016/j.epsl.2018.03.023en
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen
dc.description.obiettivoSpecifico1A. Geomagnetismo e Paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.contributor.authorGiordano, G.en
dc.contributor.authorZanella, E.en
dc.contributor.authorTrolese, M.en
dc.contributor.authorBaffioni, C.en
dc.contributor.authorVona, A.en
dc.contributor.authorCaricchi, Chiaraen
dc.contributor.authorDe Benedetti, A. A.en
dc.contributor.authorCorrado, S.en
dc.contributor.authorRomano, C.en
dc.contributor.authorSulpizio, R.en
dc.contributor.authorGeshi, N.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli Studi di Roma Tre-
crisitem.author.deptDipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversità degli Studi di Roma Tre, Dipartimento di Scienze-
crisitem.author.deptCIRISIVU, c/o Dipartimento Geomineralogico, Universita' di Bari-
crisitem.author.deptGeological Survey of Japan, AIST Site 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan-
crisitem.author.orcid0000-0002-5819-443X-
crisitem.author.orcid0000-0002-9508-7211-
crisitem.author.orcid0000-0002-5483-5623-
crisitem.author.orcid0000-0001-9391-1484-
crisitem.author.orcid0000-0003-1442-7729-
crisitem.author.orcid0000-0002-3930-5421-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Giordano_et_al_2018.pdf4.11 MBAdobe PDF
Giordano_et_al_2018.pdfOpen Access1.11 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

10
checked on Feb 7, 2021

Page view(s)

313
checked on Apr 17, 2024

Download(s)

106
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric