Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1124
DC FieldValueLanguage
dc.contributor.authorallCarannante, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallBoschi, L.; ETH, Zurich, Switzerlanden
dc.date.accessioned2006-04-20T11:04:18Zen
dc.date.available2006-04-20T11:04:18Zen
dc.date.issued2005-12en
dc.identifier.urihttp://hdl.handle.net/2122/1124en
dc.identifier.urihttp://hdl.handle.net/2122/1124en
dc.description.abstractObservations of seismic surface waves provide the most important constraint on the elastic properties of the Earth’s lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997) and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001), and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earth’s crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997) of better quality; those of Trampert and Woodhouse (2001) result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997). Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.en
dc.format.extent7575770 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries6/48 (2005)en
dc.subjectseismic tomographyen
dc.subjectupper mantleen
dc.subjectlateral resolutionen
dc.subjectazimuthal anisotropyen
dc.titleDatabases of surface wave dispersionen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.relation.referencesANTOLIK, M., Y.J. GU, G. EKSTRÖM and A.M. DZIEWONSKI (2003): J362D28: a new joint model of compressional and shear velocity in the mantle, Geophys. J. Int., 153, 443-466. BASSIN, C., G. LASKE and G. MASTERS (2000): The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. Geophys. Un., 81, F897. BECKER, T.W. and L. BOSCHI (2002): A comparison of tomographic and geodynamic mantle models, Geochem. Geophys. Geosys., 3, 2001GC000168. BECKER, T.W., J.B. KELLOGG, G. EKSTRÖM and R.J. O’CONNELL (2003): Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models, Geophys. J. Int., 155, 696-714. BEGHEIN, C. (2003): Seismic anisotropy inside the Earth from a model space search approach, Ph.D. Thesis, (Utrecht University, Utrecht, Netherlands). BOSCHI, L. (2001): Applications of linear inverse theory in modern global seismology, Ph.D. Thesis (Harvard University, Cambridge, Massachusetts). BOSCHI, L. (2005): Global multi-resolution models of surface wave propagation: the effects of scattering, Geophys. J. Int. (submitted). BOSCHI, L. and A.M. DZIEWONSKI (1999): «High» and «low» resolution images ofthe Earth’s mantle-Implications of different approaches to tomographic modeling, J. Geophys. Res., 104, 25,567-25,594. BOSCHI, L. and G. EKSTRÖM (2002): New images of the Earth’s upper mantle from measurements of surfacewave phase velocity anomalies, J. Geophys. Res., 107, doi: 10.129/2000JB000059. BOSCHI, L. and J.H. WOODHOUSE (2005): Surface wave raytracing and azimuthal anisotropy, Geophys. J. Int. (in press). BOSCHI, L., G. EKSTRÖM and K. KUSTOWSKI (2004): Multiple resolution surface wave tomography: the Mediterranean Basin, Geophys. J. Int., 157, 293-304, doi: 10.1111j.1365-246X.2004.02194.x. CARANNANTE, S. (2004): Velocità di fase delle onde sismiche di superficie: immagini tomografiche globali a risoluzione variabile, Tesi di Laurea (Università degli Studi di Napoli «Federico II», Napoli, Italy). DZIEWONSKI, A.M. and D.L. ANDERSON (1981): Preliminary reference Earth model, Phys. Earth Planet. Int., 25, 297-356. EKSTRÖM, G. (2000): Mapping the lithosphere and asthenosphere with surface waves: lateral structure and anisotropy, in The History and Dynamics of Global Plate Motions, edited by M. RICHARDS, R.G. GORDON, and R.D. VAN DER HILST, Am. Geophys. Un. Monogr., 121, pp. 239. EKSTRÖM, G., J. TROMP and E.W.F. LARSON (1997): Measurements and global models of surface wave propagation, J. Geophys. Res., 102, 8137-8157. HANSEN, P.C. (1992): Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (4), 561-580. INOUE, H., Y. FUKAO, K. TANABE and Y. OGATA (1990): Whole mantle P-wave travel time tomography, Phys. Earth Planet. Int., 59, 294-328. JORDAN, T.H. (1978): A procedure for estimating lateralvariations from low-frequency eigenspectra data, Geophys. J. R. Astron. Soc., 52, 441-455. LASKE, G. and G. MASTERS (1998): Surface wave polarization data and global anisotropic structure, Geophys. J. Int., 132, 508-520. PRESS, W.H., S.A. TEUKOLOSKY, W.T. VETTERLING and B.P. FLANNERY (1994): Numerical Recipes in FORTRAN (Cambridge University Press, U.K.). RITZWOLLER, H., N.M. SHAPIRO, L.L. ANATOLI and M.L. GARRETT (2001): CRUstal and upper mantle structure beneath Antartica and surrounding oceans, J. Geophys. Res., 106, 30645-30670. SHAPIRO, M.N. and M.H. RITZWOLLER (2002): Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle, J. Geophys. Res., 151, 88-105. SPETZLER, J., J. TRAMPERT and R. SNIEDER (2002): The effect of scattering in surface wave tomography, Geophys. J. Int., 149, 755-767. TARANTOLA, A. and B. VALETTE (1982): Generalized nonlinear inverse problems solved using the least-squares criterion, Rev. Geophys. Space Phys., 20, 219-232. TRAMPERT, J. and J.H. WOODHOUSE (1995): Global phase velocity maps of Love and Rayleigh waves between 40 and 150 s, Geophys. J. Int., 122, 675-690. TRAMPERT, J. and J.H. WOODHOUSE (2001): Assessment of global phase velocity models, Geophys. J. Int., 144, 165-174. TRAMPERT, J. and J.H. WOODHOUSE (2003): Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s, Geophys. J. Int., 154, 154-165. TROMP, J. and F.A. DAHLEN (1992): Variational principles for surface wave propagation on a laterally heterogeneous Earth, II. Frequency domain JWKB theory, Geophys. J. Int., 109, 599-619. TROMP, J. and F.A. DAHLEN (1993): Maslov theory for surface wave propagation on a laterally heterogeneous Earth, Geophys. J. Int., 115, 512-528. WESSEL, P. and W.H.F SMITH (1991): Free software helps map and display data, EOS, Trans. Am. Geophys. Un., 72, 445-446.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorCarannante, S.en
dc.contributor.authorBoschi, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentETH, Zurich, Switzerlanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptUniversità degli Studi di Padova-
crisitem.author.orcid0000-0002-5209-2221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
07 Carannante.pdf7.4 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

289
checked on Apr 20, 2024

Download(s) 5

1,594
checked on Apr 20, 2024

Google ScholarTM

Check