Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10848
DC FieldValueLanguage
dc.date.accessioned2018-02-27T14:26:28Zen
dc.date.available2018-02-27T14:26:28Zen
dc.date.issued2017en
dc.identifier.urihttp://hdl.handle.net/2122/10848en
dc.description.abstractAn Mw 6.1 normal faulting earthquake struck Central Italy in 2009 April, which unfortunately nucleated right below the town of L’Aquila, causing more than 300 casualties and widespread damage. The main shock was preceded by a foreshock sequence lasting ∼6 months. It has been claimed that an analysis of continuous Global Positioning System (GPS) data shows that during the foreshock sequence a 5.9 Mw slow slip event (SSE) occurred along a decollement located beneath the reactivated normal fault system. This hypothesized SSE that started in the middle of 2009 February and lasted for almost two weeks would have eventually loaded the largest foreshock and the main shock. We show that the strain signal that the SSE would have generated at two laser strainmeters operating at about 20 km NE from the SSE source was essentially undetected.We then propose an alternative interpretation for the displacement observed in the GPS data. A transient signal is present in temperature and precipitation timeseries recorded close to the GPS station that has largest signal referred to the SSE, implying that these contaminated the GPS record. This work illustrates how environmental noise may be relevant when investigating small strain signals, showing the importance of having data from weather stations and water level sensors colocated with GPS stations.en
dc.language.isoEnglishen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/210 (2017)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.titleSurface temperature and precipitation affecting GPS signals before the 2009 L’Aquila earthquake (Central Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber911–918en
dc.identifier.doi10.1093/gji/ggx210en
dc.description.obiettivoSpecifico1T. Deformazione crostale attivaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorChiaraluce, Lauroen
dc.contributor.authorAmoruso, Antonellaen
dc.contributor.authorCrescentini, Lucaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentDipartimento di Chimica e Biologia - UniSAen
dc.contributor.departmentDipartimento di Fisica - UniSAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversità degli Studi di Salerno-
crisitem.author.deptUniversità degli Studi di Salerno-
crisitem.author.orcid0000-0002-9697-6504-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
51-Amoruso_EtAl_GJI_2017.pdf6.17 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

3
checked on Feb 7, 2021

Page view(s)

206
checked on Apr 24, 2024

Download(s)

155
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric