Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10693
DC FieldValueLanguage
dc.date.accessioned2018-02-15T10:50:24Zen
dc.date.available2018-02-15T10:50:24Zen
dc.date.issued2017-09en
dc.identifier.urihttp://hdl.handle.net/2122/10693en
dc.description.abstractEarthquake forecasting is the ultimate challenge for seismologists, because it condenses the scientific knowledge about the earthquake occurrence process, and it is an essential component of any sound risk mitigation planning. It is commonly assumed that, in the short term, trustworthy earthquake forecasts are possible only for typical aftershock sequences, where the largest shock is followed by many smaller earthquakes that decay with time according to the Omori power law. We show that the current Italian operational earthquake forecasting system issued statistically reliable and skillful space-time-magnitude forecasts of the largest earthquakes during the complex 2016-2017 Amatrice-Norcia sequence, which is characterized by several bursts of seismicity and a significant deviation from the Omori law. This capability to deliver statistically reliable forecasts is an essential component of any program to assist public decision-makers and citizens in the challenging risk management of complex seismic sequences.en
dc.language.isoEnglishen
dc.relation.ispartofScience advancesen
dc.relation.ispartofseries/3 (2017)en
dc.subjectEarthquake Forecastingen
dc.subjectAmatrice-Norcia seismic sequenceen
dc.titleEarthquake forecasting during the complex Amatrice-Norcia seismic sequenceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumbere1701239en
dc.identifier.URLhttp://advances.sciencemag.org/content/3/9/e1701239en
dc.subject.INGV04.06. Seismologyen
dc.identifier.doi10.1126/sciadv.1701239en
dc.relation.references1. P. A. Reasenberg, L. M. Jones, Earthquake hazard after a mainshock in California. Science 243, 1173–1176 (1989). 2. P. A. Reasenberg, L. M. Jones, California aftershock hazard forecasts. Science 247, 345–346 (1990). 3. T. Utsu, A statistical study of the occurrence of aftershocks. Geophys. Mag. 30, 521–605 (1961). 4. T. Utsu, Aftershocks and earthquake statistics (II)—Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J. Fac. Sci. Hokkaido Univ. Ser. 7 3, 197–266 (1970). 5. B. Gutenberg, C. F. Richter, Earthquake magnitude, intensity, energy and acceleration. Bull. Seismol. Soc. Am. 46, 105–145 (1956). 6. N. Kamaya, N. Yamada, Y. Ishigaki, K. Takeda, H. Kuroki, S. Takahama, K. Moriwaki, M. Yamamoto, M. Ueda, T. Yamauchi, M. Tanaka, Y. Komatsu, K. Sakoda, N. Hirota, J.-. Suganomata, A. Kawai, Y. Morita, S. Annoura, Y. Nishimae, S. Aoki, N. Koja, K. Nakamura, G. Aoki, T. Hashimoto, “[MIS34-P01] Overview of the 2016 Kumamoto earthquake,” Japan Geoscience Union Meeting, Chiba, Japan, 25 May 2016. 7. Y. Ogata, Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 50, 379–402 (1998). 8. M. C. Gerstenberger, S. Wiemer, L. M. Jones, P. A. Reasenberg, Real‐time forecasts of tomorrow’s earthquakes in California. Nature 435, 328–331 (2005). 9. A. Helmstetter, D. Sornette, Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res. 107, 2237 (2002). 10. K. R. Felzer, R. E. Abercrombie, G. Ekström, A common origin for aftershocks, foreshocks, and multiplets. Bull. Seismol. Soc. Am. 94, 88–98 (2004). 11. W. Marzocchi, A. M. Lombardi, E. Casarotti, The establishment of an operational earthquake forecasting system in Italy. Seismol. Res. Lett. 85, 961–969 (2014). 12. T. H. Jordan, Y.-T. Chen, P. Gasparini, R. Madariaga, I. Main, W. Marzocchi, G. Papadopoulos, G. Sobolev, K. Yamaoka, J. Zschau, Operational earthquake forecasting. State of knowledge and guidelines for implementation. Ann. Geophys. 54, 315–391 (2011). 13. A. M. Lombardi, W. Marzocchi, The ETAS model for daily forecasting of Italian seismicity in the CSEP experiment. Ann. Geophys. 53, 155–164 (2010). 14. G. Falcone, R. Console, M. Murru, Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST. Ann. Geophys. 53, 41–50 (2010). 15. J. Woessner, A. Christophersen, J. D. Zechar, D. Monelli, Building self-consistent, short-term earthquake probability (STEP) models: Improved strategies and calibration procedures. Ann. Geophys. 53, 141–154 (2010). 16. W. Marzocchi, J. D. Zechar, T. H. Jordan, Bayesian forecast evaluation and ensemble earthquake forecasting. Bull. Seismol. Soc. Am. 102, 2574–2584 (2012). 17. W. Marzocchi, T. H. Jordan, Testing for ontological errors in probabilistic forecasting models of natural systems. Proc. Natl. Acad. Sci. U.S.A. 111, 11973–11978 (2014). 18. T. H. Jordan, Earthquake predictability, brick by brick. Seismol. Res. Lett. 77, 3–6 (2006). 19. J. D. Zechar, D. Schorlemmer, M. Liukis, J. Yu, F. Euchner, P. J. Maechling, T. H. Jordan, The Collaboratory for the Study of Earthquake Predictability perspective on computational earthquake science. Concurr. Comput. 22, 1836–1847 (2010). 20. J. D. Zechar, M. C. Gerstenberger, D. A. Rhoades, Likelihood-based tests for evaluating space–rate–magnitude earthquake forecasts. Bull. Seismol. Soc. Am. 100, 1184–1195 (2010). 21. D. Schorlemmer, M. C. Gerstenberger, S. Wiemer, D. D. Jackson, D. A. Rhoades, Earthquake likelihood model testing. Seismol. Res. Lett. 78, 17–29 (2007). 22. H. W. Lilliefors, On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 64, 387–389 (1969). 23. W. Marzocchi, A. M. Lombardi, Real‐time forecasting following a damaging earthquake. Geophys. Res. Lett. 36, L21302 (2009). 24. K. Wang, G. C. Rogers, Earthquake preparedness should not fluctuate on a daily or weekly basis. Seismol. Res. Lett. 85, 569–571 (2014). 25. T. H. Jordan, W. Marzocchi, A. J. Michael, M. C. Gerstenberger, Operational earthquake forecasting can enhance earthquake preparedness. Seismol. Res. Lett. 85, 955–959 (2014). 26. W. Marzocchi, I. Iervolino, M. Giorgio, G. Falcone, When is the probability of a large earthquake too small? Seismol. Res. Lett. 86, 1674–1678 (2015). 27. E. H. Field, T. H. Jordan, L. M. Jones, A. J. Michael, M. L. Blanpied, The potential uses of operational earthquake forecasting. Seismol. Res. Lett. 87, 313–322 (2016). 28. American Association for the Advancement of Science (AAAS), Science for All Americans: A Project 2061 Report on Literacy Goals in Science, Mathematics, and Technology (AAAS, 1989). 29. P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015). 30. E. H. Field, K. R. Milner, J. L. Hardebeck, M. T. Page, N. van der Elst, T. H. Jordan, A. J. Michael, B. E. Shaw, M. J. Werner, A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast. Bull. Seismol. Soc. Am. 107, 1049–1081 (2017). 31. M. Greenwood, G. U. Yule, An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference of multiple attacks of disease or of repeated accidents. J. R. Stat. Soc. 83, 255–279 (1920).en
dc.description.obiettivoSpecifico5T. Modelli di pericolosità sismica e da maremotoen
dc.description.journalTypeJCR Journalen
dc.relation.eissn2375-2548en
dc.contributor.authorMarzocchi, Warneren
dc.contributor.authorTaroni, Matteoen
dc.contributor.authorFalcone, Giuseppeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-9114-1516-
crisitem.author.orcid0000-0001-6999-4590-
crisitem.author.orcid0000-0002-2554-4421-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Marzocchi_et_al_2017.pdf1.05 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

22
checked on Feb 10, 2021

Page view(s)

180
checked on Apr 24, 2024

Download(s)

5
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric