Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10630
DC FieldValueLanguage
dc.date.accessioned2017-11-17T10:38:48Zen
dc.date.available2017-11-17T10:38:48Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/2122/10630en
dc.description.abstractNewly acquired GPS data along transects across Himalaya in Eastern Himalayan Syntaxis (EHS) reveal a clockwise rotation of rigid micro-plate comprising part of Brahmaputra valley, NE Himalaya and Northern Myanmar that rotates about a pole located at 14.5°N, 100.8°E at an angular rate of 1.75 ± 0.12°/Myr. The EHS is being torn-off from the main Indian Plate as a rigid block around which the kinematic clockwise rotation of Tibetan GPS sites toward the Sichuan-Yunnan region occurs in the Eurasia fixed frame. The residual velocity field of the newly acquired data estimated after removing the rotation that minimizes the GPS rates around EHS show a clear NE motion of the EHS sites, indentation of the rigid Indian plate into a less rigid area of the Eurasian plate. Themost extensive EHS zones of compression and shortening are in the direction of indenter convergence, with average values ranging between ~50–100 nanostrain/year. Along the frontal segment of EHS, from NWto SE, the shortening rate is reduced from the local maximum value of 160 to ~80 nanostrain/year, thus indicating a possibly locked fault patch of Mishmi or Lohit thrusts, the southernmost part of segment activated during the large 1950 Assam earthquake, Mw 8.6. An elastic block-model was invoked to infer the average slip rates of sections around EHS and to estimate an average locking depth of ~15 km. The slip rate perpendicular to the locked sector of EHS reaches 32.4mm/year and permits to roughly infer a recurrence time of ~200 year for an earthquake as energetic as the 1950 Assam event.en
dc.language.isoEnglishen
dc.relation.ispartofTectonophysicsen
dc.relation.ispartofseries/655(2015)en
dc.subjectGPS dataen
dc.subjectEastern Himalayan Syntaxis (EHS)en
dc.subjectIndia plateen
dc.subjectBlock modelingen
dc.subjectstrain rateen
dc.subjectlocked faulten
dc.titleKinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast Indiaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber15-26en
dc.subject.INGVCrustal deformationen
dc.identifier.doi10.1016/j.tecto.2015.04.017en
dc.relation.referencesAder, T., Avouac, J.-P., Liu Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., Sapkota, S.N., Raujari, S., Shrestha, P., Ding, L., Flouzat, M., 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust: implications for seismic hazard. J. Geophys. Res. 117 (B044403). Allégre, C.J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, U., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariépy, C., Göpel, C., Tindong, L., Xuchang, X., Chenfa, C., Guangqin, L., Baoyu, L., Jiwen, T., Naiwen, W., Guoming, C., Tonglin, H., Xibin, W., Wanming, D., Huaibin, S., Yougong, C., Ji, Z., Hongrong, Q., Peisheng, B., Songchan, W., Bixiang, W., Yaoxiu, Z., Xu, R., 1984. Structure and evolution of the Himalaya–Tibet Orogenic belt. Nature 307, 17–22. Allmendinger, R.W., Reilinger, R., Loveless, J., 2007. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 26 (3). http://dx.doi.org/10.1029/ 2006TC002030. Altamimi, Z., Métivier, L., Collilieux, X., 2012. ITRF2008 plate motion model. J. Geophys. Res. Solid Earth 117 (B7). http://dx.doi.org/10.1029/2011JB008930 (1978–2012). Armijo, R., Tapponier, P., Mercier, J.L., Han, T.-L., 1986. Quaternary extension in southern Tibet: field observations and tectonic implications. J. Geophys. Res. 91, 13803–13872. http://dx.doi.org/10.1029/JB091iB14p13803. Bendick, R., Bilham, R., 2001. How perfect is the Himalayan Arc? Geology 29, 791–794. Ben-Menahem, A., Aboodi, E., Schild, R., 1974. The source of the Great Assam Earthquake — an interplate wedge motion. Phys. Earth Planet. Inter. 9, 265–289. Bilham, R., Gaur, V.K., Molnar, P., 2001. Himalayan Seismic Hazard. Science 293, 1442–1444. Burgess, W.P., Yin, A., Dubey, C.S., Shen, Z.-K., Kelty, T.K., 2012. Holocene shortening across the main frontal thrust zone in the eastern Himalaya. Earth Planet. Sci. Lett. 357, 152–167. Cao, J.L., Shi, Y.L., Zhang, H.,Wang, H., 2009. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. Chin. Sci. Bull. 54 (8), 1398–1410. http://dx.doi.org/10.1007/s11434-008-0588-7. Chen,W.P., Molnar, P., 1977. Seismicmoments ofmajor earthquakes and the average rate of slip in Asia. J. Geophys. Res. 82, 2945–2969. Clark, M., Royden, L.H., 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28 (8), 703–706. Copley, A., McKenzie, D., 2007. Models of crustal flow in the India–Asia collision zone. Geophys. J. Int. 169, 683–698. http://dx.doi.org/10.1111/j.1365-246X.2007.03343.x. Deng, Y., Panza, G.F., Zhang, Z., Romanelli, F.,Ma, T.,Doglioni, C.,Wang, P., Zhang,X., Teng, J., 2014. Transition from continental collision to tectonic escape? A geophysical perspective on lateral expansion of the northern Tibetan Plateau. Earth Planets Space 66, 1–10. Devachandra, M., Kundu, B., Catherine, J., Kumar, A., Gahalaut, V.K., 2014. Global Positioning System (GPS) Measurements of Crustal Deformation across the Frontal Eastern Himalayan Syntaxis and Seismic‐Hazard Assessment. Bull. Seismol. Soc. Am. 104, 1518–1524. Devoti, R., Riguzzi, F., Cuffaro, M., Doglioni, C., 2008. New GPS constraints on the kinematics of the Apennine subduction. Earth Planet. Sci. Lett. 273 (1–2), 163–174. England, P.C., Houseman, G.A., Osmaston,M.F., Ghosh, S., 1988. The mechanics of the Tibetan Plateau (and discussion). Philos. Trans. R. Soc. Lond. AMath. Phys. Sci. 326, 301–320. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. Theshuttle radar topography mission. Rev. Geophys. 45. http://dx.doi.org/10.1029/2005RG000183 (RG2004). Gahalaut, V., Gahalaut, K., 2007. Burma plate motion. J. Geophys. Res. 112. http://dx.doi. org/10.1029/2007JB004928 (B10402). Gan, W., Zhang, P., Shen, Z.-K., Niu, Z., Wang, M., Wan, Y., Zhou, D., Cheng, J., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 112. http://dx.doi.org/10.1029/2005JB004120 (B08416). Herring, T.A., King, R.W., McClusky, S.C., 2006a. GAMIT Reference Manual, GPS Analysis at MIT, Release 10.3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology (Available at: www.gpsg.mit.edu). Herring, T.A., King, R.W., McClusky, S.C., 2006b. GLOBK Reference Manual, Global Kalman filter VLBI and GPS analysis program, Release 10.3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology (Available at: www. gpsg.mit.edu). Jade, S., Mukul, M., Bhattacharyya, A.K., Vijayan, M.S.M., Jaganathan, S., Kumar, A., 2007. Estimates of interseismic deformation in Northeast India from GPS measurements. Earth Planet. Sci. Lett. 263 (3-4), 221–234. http://dx.doi.org/10.1016/j.epsl.2007.08.031. Larson, K.M., Bürgmann, R., Bilham, R., Freymueller, J.T., 1999. Kinematics of the India‐ Eurasia collision zone from GPS measurements. J. Geophys. Res. 104 (B1), 1077–1093. Mahesh, P., Catherine, J.K., Gahalaut, V.K., Kundu, B., Ambikapathy, A., Bansal, A., Premkishore, L., Narsaiah, M., Ghavri, S., Chadha, R.K., Choudhary, P., Singh, D.K., Singh, S.K., Kumar, S., Nagarajan, B., Bhatt, B.C., Tiwari, R.P., Kumar, A., Kumar, A., Bhu, H., Kalita, S., 2012. Rigid Indian plate: constraints from GPS measurements. Gondwana Res. 22, 1068–1072. Maurin, T., Masson, F., Rangin, C., Min, U.T., Philippe, C., 2010. First global positioning system results in northern Myanmar: constant and localized slip rate along the Sagaing fault. Geology 38 (7), 591–594. http://dx.doi.org/10.1130/G30872.1. Michel, G.W., Becker, M., Angermann, D., Reigber, C., Reinhart, E., 2000. Crustal motion in E- and SE-Asia from GPS measurements. Earth Planets Space 52, 713–720. Molnar, P., Pandey, M.R., 1989. Rupture zones of great earthquakes in the Himalayan region. Proc. Indiana Acad. Sci. Earth Planet. Sci. 98 (1), 61–70. Molnar, P., Tapponnier, P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189, 419–426. Mukhopadhyay, B., Dasgupta, S., 2015. Earthquake swarms near eastern Himalayan Syntaxis along Jiali Fault in Tibet: A seismotectonic appraisal. Geoscience Frontiers. http://dx.doi.org/10.1016/j.gsf.2014.12.009. Mukhopadhyay, B., Acharyya, A., Bhattacharyya, D., Dasgupta, S., Pande, P., 2011. Seismotectonics at the terminal ends of the Himalayan Arc, Geomatics. Nat. Hazards Risk 2 (2), 159–181. Mullick, M., Riguzzi, F., Mukhopadhyay, D., 2009. Estimates of motion and strain rates across active faults in thefrontal part of eastern Himalayas in North Bengal from GPSmeasurements. Terra Nova 21, 410–415. http://dx.doi.org/10.1111/j.1365-3121. 2009.00898.x. Nelson, K.D., Zhao,W.J., Brown, L.D., Kuo, J., Che, J.K., Liu, X.W., Klemperer, S.L.,Makovsky, Y., Meissner, R., Mechie, J., Kind, R., Wenzel, F., Ni, J., Nabelek, J., Chen, L.S., Tan, H.D., Wei, W.B., Jones, A.G., Booker, J., Unsworth, M., Kidd, W.S.F., Hauck, M., Alsdorf, D., Ross, A., Cogan, M., Wu, C.D., Sandvol, E., Edwards, M., 1996. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274 (5293), 1684–1688. Ren, Y., Shen, Y., 2008. Finite frequency tomography in South Eastern Tibet: evidence for the causal relationship between mantle lithosphere delamination and north–south trending rifts. J. Geophys. Res. 113 (B10316). Riguzzi, F., Crespi, M., Devoti, R., Doglioni, C., Pietrantonio, G., Pisani, A.R., 2012. Geodetic strain rate and earthquake size: new clues for seismic hazard studies. Phys. Earth Planet. Inter. 206–207, 67–75. Riguzzi, F., Crespi, M., Devoti, R., Doglioni, C., Pietrantonio, G., Pisani, A.R., 2013. Strain rate relaxation of normal and thrust faults in Italy. Geophys. J. Int. 195, 815–820. http://dx. doi.org/10.1093/gji/ggt304. Royden, L.H., Burchfiel, B.C., King, R.E.,Wang, E., Chen, Z., Shen, F., Liu, Y., 1997. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788–790. Sahu, V.K., Gahalaut, V.K., Rajput, S., Chadha, R.K., Singh Laishram, S., Kumar, A., 2006. Crustal deformation in the Indo-Burmese arc region: implications from the Myanmar and Southeast Asia GPS measurements. Curr. Sci. 90 (12), 1688–1693. Shen, Z.-K., Jackson, D.D., Ge, B.X., 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res. 101, 27957–27980. Shen, Z.-K., Lü, J., Wang, M., Burgmann, R., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. 110 (B11). http://dx.doi.org/10.1029/2004JB003421 (B11409). Shen, Z.-K., Jackson, D.D., Kagan, Y.Y., 2007. Implications of geodetic strain rate for future earthquakes, with a five-year forecast of M5 earthquakes in Southern California. Seismol. Res. Lett. 78, 116–120. Shen, Z.-K., Sun, J., Zang, P., Wan, y., Wang, M., Bürgmann, R., Zeng, Y., Gan, W., Liao, H., Wang, Q., 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci. 2, 718–724. http://dx.doi.org/10.1038/ NGEO636. Simons, W.J.F., Socquet, A., Vigny, C., Ambrosius, B.A.C., Haji Abu, S., Promthong, C., Subraya, C., Sarsito, D.A., Matheussen, S., Morgan, P., Spakman, W., 2007. A Decade of GPS In Southeast Asia: resolving Sundaland Motion and boundaries. J. Geophys. Res. 112. http://dx.doi.org/10.1029/2005JB003868. Singh, M., Kumar, A., 2013. Active deformation measurements at Mishmi Complex of Eastern Himalayan Syntaxis. Int. J. Geosci. 4 (4), 746–758. http://dx.doi.org/10. 4236/ijg.2013.44068. Singh, L.S., Gahalaut, V.K., Kumar, A., 2014. Nine years of GPS measurements of crustal deformation at Imphal, Indo-Burmese Wedge. J. Geol. Soc. India 83, 513–516. Socquet, A., Vigny, C., Chamot-Rooke, N., Simons,W., Rangin, C., Ambrosius, B., 2006. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J. Geophys. Res. 111. http://dx.doi.org/10.1029/2005JB003877 (B05406). Sol, S.,Meltzer, A., Burgmann, R., Van der Hilst, R.D., King, R., Chen, Z., Koons, P., Lev, E., Liu, Y.P., Zeitler, P.K., Zhang, X., Zhang, J., Zurek, B., 2007. Geodynamics of southeastern Tibet from seismic anisotropy and geodesy. Geology 35, 563–566. http://dx.doi.org/ 10.1130/G23408A1. Stork, A.L., Selby, N.D., Heyburn, R., Searle, M.P., 2008. Accurate relative earthquake hypocenters reveal structure of the Burma subduction zone. Bull. Seismol. Soc. Am. 98, 2815–2827. Vernant, P., Bilham, R., Szeliga, W., Drupka, D., Kalita, S., Bhattacharyya, A.K., Gaur, V.K., Pelgay, P., Cattin, R., Berthet, T., 2014. Clockwise rotation of the Brahmaputra valley relative to India: tectonic convergence in the eastern Himalaya, Naga Hills and Shillong Plateau. J. Geophys. Res. http://dx.doi.org/10.1002/2014JB011196. Vigny, C., Socquet, A., Rangin, C., Chamot-Rooke, N., Pubellier, M., Bouin, M.N., Bertrand, G., Becker, M., 2003. Present-day crustal deformation around Sagaing fault, Myanmar. J. Geophys. Res. 108 (B11), 2533. http://dx.doi.org/10.1029/2002JB001999. Wang, Q., Zhang, P.-Z., Freymueller, T.J., Bilham, R., Larson, K.M., Lai, X., You, X., Niu, Z.,Wu, J., Li, Y., Liu, J., Yang, Z., Chen, Q., 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science 294, 574–577. Wang, Y., Wang, E., Shen, Z., et al., 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan–Yunnan region, China. Sci. China D 51 (9), 1267–1283. Zeng, Y., Shen, Z.-K., 2014. Fault network modeling of crustal deformation in California constrained using GPS and geologic observations. Tectonophysics 612–613, 1–14. Zhang, P., Shen, Z.-K.,Wang, M., Gan,W., Burgmann, R., Molnar, P.,Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S., Xinzhao, Y., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32, 809–812. http://dx.doi. org/10.1130/G20554.1. Zhang, Z.J., Teng, J.W., Romanelli, F., Braitenberg, C., Ding, Z.F., Zhang, S.F., Zhang, X.M., Fang, L.H., Wu, J.P., Deng, Y.F., Ma, T., Sun, R.M., Panza, G.F., 2014. New evidences to understand the uplift of Tibetan plateau and the disruption of North China Craton. Earth Sci. Rev. 130, 1–48.en
dc.description.obiettivoSpecifico1T. Deformazione crostale attivaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorDutta Gupta, Tanayen
dc.contributor.authorRiguzzi, Federicaen
dc.contributor.authorDasgupta, Sujiten
dc.contributor.authorMukhopadhyay, Basaben
dc.contributor.authorRoy, Sujiten
dc.contributor.authorSharma, Somnathen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.orcid0000-0001-8692-114X-
crisitem.author.orcid0000-0002-3362-5301-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Tanay_tectonophysics_2015.pdf5.47 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

27
checked on Feb 10, 2021

Page view(s)

191
checked on Mar 27, 2024

Download(s)

7
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric