Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10624
DC FieldValueLanguage
dc.date.accessioned2017-11-14T13:56:01Zen
dc.date.available2017-11-14T13:56:01Zen
dc.date.issued2017-05-06en
dc.identifier.urihttp://hdl.handle.net/2122/10624en
dc.description.abstractCarbon dioxide is a gas denser than air, and its point-source ground emission from natural systems or from areas impacted by CO2 injection underground may result in hazardous accumulation, especially in topographically-depressed sites. The use of atmospheric dispersion numerical models helps predicting the dispersion of the CO2-enriched gas plume once emitted from underground and allows an accurate map of hazard level through time under particular meteorological conditions. In this study, the accuracy of atmospheric dispersion simulations has been tested using a natural system of CO2 emission to atmosphere from underground in an area called Solforata di Pomezia, near the city of Rome in central Italy. This area is located in the Alban Hills, which underwent volcanic activity during the Quaternary, and is characterised by low permeability volcanic and sedimentary formations that allow the accumulation of gas at shallow depths and below surface. This site has been long investigated in terms of soil CO2 emission rates, which range from 44 to 95 ton∙day-1. Using the TWODEE2 numerical code, a number of simulations were performed considering a set of combined CO2 soil flux emission and meteorological (wind, temperature) from literature. The results fit well in the range of measured CO2 concentration in air at distinct heights in the site. The model does not predict lethal gas concentration at heights 1 and 2 m above the ground based on actual soil emission rate (95 ton∙day-1). Two probabilistic models were developed with emission rate five (500 ton∙day-1) and ten (1000 ton∙day-1 times bigger than nowadays but still no hazardous levels were predicted.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries5/60(2017)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectCO2en
dc.subjectatmospheric dispersionen
dc.subjectRisk assessmenten
dc.subjectmodellingen
dc.subjectsoil fluxen
dc.subjectair concentrationen
dc.titleAtmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberS0550en
dc.subject.INGV04.04. Geologyen
dc.subject.INGV04.08. Volcanologyen
dc.subject.INGV05.08. Risken
dc.identifier.doi10.4401/ag-7286en
dc.relation.referencesAcocella, V., Salvini, F., Funicello, R., Faccenna, C., 1999. The role of transfer structures on volcanic Activity at Campi Flegrei (Southern Italy). Journal of Volcanology and Geothermal Research, 91(2), 123-139. Billing, W.FD., Lucken, J.O., Mortensen, D.A., Peterson, K.M., 1982. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia. 53, 7-11. Carapezza, M.L., and Granieri, D., 2004. CO2 soil flux at Vulcano (Italy): comparison between active and passive methods. App. Geochem. 19, 73-88. Carapezza, M.L., Barberi, F., Tarchini, L., Cavarra, L., Granieri, D. ,2005. Le emissioni gassose dell’area vulcanica dei Colli Albani. In: Carapezza, M.L., et al. (Ed.), Nuovi dati sull’attività recente del cratere del Lago Albano e sul degassamento dei Colli Albani. Atti Accad. Naz. Lincei, 218, 229–242. Carapezza, M.L., Barberi, F., Ranaldi, M., Ricci, T., Tarchini, L., Barrancos, J., Fischer, C., Granieri, D., Lucchetti, C., Melian, G., Perez, N., Tuccimei, P., Vogel, A., Weber, K., 2012. Hazardous gas emissions from the flanks of the quiescent Colli Albano volcano (Rome, Italy). App. Geochem. 22, 1767-1782. Carrigan, C.R., 2010. Noble gas field operations test: Towards detecting ’the smoking gun’ during an on-site inspection. CTBTO Spectrum 15, 1, 22–25. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543- 552. Chiodini, G., and Frondini, F., 2001. Carbon dioxide degassing from the Albani Hills vocanic region, Central Italy. Chemical Geology 177, 67-83. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett., 31, L07615, DOI:10.1029/2004GL019480. Costa, A., Macedonio, G., Chiodini, G., 2005. Numerical model of gas dispersion emitted from volcanCO2 ATMOSPHERIC DISPERSION MODELLING AND RISK ASSESSMENT 11 ic sources. Annals of Geophysics, 48, 508-815. Costa, A., Chiodini, G., Granieri, D., Folch, A., Hankin, R., Caliro, S., Avino, R., Cardellini, C., 2008. A shallow layer model for heavy gas dispersion from natural sources: application on hazard assessment at Caldara di Manziana, Italy. Geochem. Geophys. Geosys. 9, Issue 3 pp 1-13. De Lary, L., Loschetter, A., Bouc, O., Rohmer, J., Oldenburg, C.M., 2012. Assessing health impacts of CO2 leakage from a geological storage site into buildings: role of attenuation in the unsaturated zone and buildings foundation. Int. Journal of Greenhouse Gas Control, 9, 322-333. DOI: 10.1016/j.ijggc.2012.04.011 De Rita, D., Funicello, R., Parotto, M., 1988. Geological map of the Colli Albani volcanic complex (“Vulcano Laziale”), CNR-GNV, Joint venture ENEA-AGIP. De Rita, D., Faccenna, C., Funicello, R., Rosa, C., 1995. Stratigraphy and volcano-tectonics. In Triglia, R (Ed.), The Volcano of Alban Hills, Rome, 33-71. Funicello, R., Mattei, M., Voltaggio, M., 1992. Recent strike slip faulting and problems of possible reactivation in Rome area. In: Boschi, E., Dragoni, M., (Eeds.), Earthquake Prediction, 225-236, Rome. Folch, A., Costa, A, Hankin, R.K.S., 2007. TWODEE-2 Computer code and related documentation (for internal use only). Project INGV-DPC V5 Diffuse degassing in Italy (2005-2007). Folch, A., Costa, A, Hankin, R.K.S., 2008. TWODEE-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences, 35, 3, 667-674. doi:10.1016/j.cageo.2007.12.017 Gasparini, A., Credoz, A., Grandia, F., Garcia, D.A., Bruno, J., 2015. Experimental and numerical modeling of CO2 leakage in the vadose zone. Greenhouse Gas Sci. Technol. 5, 1-24; DOI: 10.1002/ ghg1523. Hankin, R., Britter, R., 1999 a. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 1: Mathematical basis and physical assumptions. J. Hazard. Mater. A66, 211-226. Hankin, R., Britter, R., 1999 b. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 2: Outline and validation of the computational scheme. J. Hazard. Mater. A66, 227-237. Hankin, R., Britter, R., 1999 c. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 3: Experimental validation (Theory island). J. Hazard. Mater. A66, 236- 261. Istituto Geografico Militare, Carta Geologica d’Italia (II edizione), Foglio Geologico 100.00 ED50 UTM 32N. Laiolo M., Ranaldi M., Tarchini L., Carapezza M.L., Coppola D., Ricci T., Cigolini C., 2016. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity. J. Volcanol. Geotherm. Res., 315, 65-78. DOI:10.1016/j.jvolgeores. 2016.02.004. Norstadt, F.A., and Porter, L.K., (1984). Soil gases and temperatures: a beef cattle feedlot compared to alfalfa. Soil Sci. Soc. Am. J. 48, 783–789. DOI: 10.2136/sssaj1984.03615995004800040017x. Oldenburg, C.M., and Unger, A.J.A., 2003. On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J., 2, 3, 287–296. Oldenburg, C.M., Lewicki, J.L., Pan, L., Dobeck, L., Spangler, L., 2010. Origin of the patchy emission pattern at the ZERT CO2 release test. Environ Earth Sci, 60, 241–250.Raich, J.W., & Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. Schiff, H.I., Mackay, G-I-. Bechara, J., 1994. The use of Tunable Diode Laser Absorption spectroscopy for atmospheric measurements. In: Sigrist, M.W. (ed.), Air Monitoring by Spectroscopy Techniques. J. Wiley & Sons, 239-333. Selvaggi, G., and D’Ajello Caracciolo, F., 1998. Seismic deformation at the Alban Hills volcano during the 1989-1990 seismic sequence. Annali di Geofisica, 41, 2, 225-231. Tittel, F.K., Weidmann, D., Oppenheimer, C., Gianfrani, L., 2006. Laser absorption spectroscopy for volcano monitoring. Opt. Photom. News, Opt. Soc. Am. 24-31. Tolomei, C., Attori, S., Salvi, S., Allievi, J., Ferretti, A., Prati, C., Rocca, F., Stramondo, S., Feuillet, N., 2003. Crustal deformation of the Alban Hills volcanic complex (central Italy) by permanent scatterers analysis. In: Proc. FRINGE 2003 Workshop, Frascati, Italy, 1-5 December 2003 (ESA SP-550, June 2004). Van Cleve, K., Oechel. W.C., Hom, J.L., 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior GASPARINI ET AL. 12 Alaska. Can. J. For. Res., 20, 1530-1535. Voltaggio, M., and Barbieri, M., 1995. Geochronology. In: Triglia, R., (Ed.), The Volcano of the Alban Hills, Rome, 167-192. Waddington, E.D., Cunningham, J., Harder, S.L., 1996. The effects of snow ventilation on chemical concentration, in Chemical Exchange Between the Atmosphere and Polar Snow, ed. by WolffEW and BalesRC , Springer, New York, pp. 403–451. Weber, K., Bothe, K., Pistiridis, S., Laue, M., Fischer, C., Van Haren, G., Gonzales Ramos, Y., Barrancos, J., Hernandez, P., Perez, N.M., Pabel, K., Sosef, M., 2005. Gas emission measurements from Teide volcano (Tenerife, Canary Islands, Spain) by means of optical remote sensing. In: Proc. 99th Annual Conf. and Exhibition Air and Waste Management Association, June 20-23, 2005, New Orleans, Louisiana, USA, A&WMA Pittsburgh, PA, 2006. Xu, M., and Qi, Y., 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677.en
dc.description.obiettivoSpecifico6A. Geochimica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.relation.issn2037-416Xen
dc.contributor.authorGasparini, Andreaen
dc.contributor.authorGrandia, Fidelen
dc.contributor.authorTarchini, Lucaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentAmphoS21 Consulting S.L.en
dc.contributor.departmentDipartimento di Scienze, Università Roma Treen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptAmphoS21 Consulting S.L.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-6831-6093-
crisitem.author.orcid0000-0002-1474-0275-
crisitem.author.orcid0000-0001-6045-0802-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
atmospheric dispersion pomezia - gasparini et al 2016.pdf3.19 MBAdobe PDFView/Open
Show simple item record

Page view(s)

347
checked on Apr 17, 2024

Download(s)

101
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric