Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10591
DC FieldValueLanguage
dc.date.accessioned2017-08-31T07:15:29Zen
dc.date.available2017-08-31T07:15:29Zen
dc.date.issued2017-08-01en
dc.identifier.urihttp://hdl.handle.net/2122/10591en
dc.description.abstractExplosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9×109 m3 (first event) to 0.86 × 109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future explosive paroxysmal sequences this new approach might help in monitoring their evolution also to understand when/if they are going to finish. Knowledge of the total gas and pyroclastic fractions erupted during each lava fountain episode would improve our understanding of their processes and eruptive behaviour.en
dc.description.sponsorshipThe Etna borehole strainmeter network benefited from the finan- cial support of the Italian FIRB project “Development of new tech- nologies for the protection and defence of the territory from nat- ural hazards” (acronym FUMO) and PON project “Development of research centers for the study of volcanic areas at high risk and their geothermal potential in the context of Mediterranean geolog- ical and environmental dynamic” (acronym VULCAMED).en
dc.language.isoEnglishen
dc.relation.ispartofEarth and Planetary Sciences Lettersen
dc.relation.ispartofseries/475 (2017)en
dc.subjectEtna volcanoen
dc.subjectparoxysmal explosive activityen
dc.subjectlava fountainsen
dc.subjecteruptive mechanismsen
dc.subjecterupted volumeen
dc.titleA new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3–5 December 2015 activity at Etna volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber231-241en
dc.subject.INGVEtna explosive activityen
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.1016/j.epsl.2017.07.020en
dc.relation.referencesAloisi, M., D’Agostino, M., Dean, K.G., Mostaccio, A., Neri, G., 2002. Satellite analysis and PUFF simulation of the eruptive cloud generated by the Mount Etna parox- ysm of 22 July 1998. J. Geophys. Res. 107 (B12), 2373. http://dx.doi.org/10.1029/ 2001JB000630. Alparone, S., Andronico, D., Lodato, L., Sgroi, T., 2003. Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000. J. Geophys. Res. 108, B52241. http://dx.doi.org/10.1029/ 2002JB001866. Andronico, D., Corsaro, R.A., 2011. Lava fountains during the episodic eruption of South–East Crater (Mt. Etna), 2000: insights into magma-gas dynamics within the shallow volcano plumbing system. Bull. Volcanol. 73, 1165–1178. http:// dx.doi.org/10.1007/s00445-011-0467-y. Andronico, D., Scollo, S., Cristaldi, A., 2015. Unexpected hazards from tephra fall- outs at Mt. Etna: the 23 November 2013 lava fountain. J. Volcanol. Geotherm. Res. 304, 118–125. Barmin, A., Melnik, O., Sparks, R.S.J., 2002. Periodic behaviour in lava dome erup- tions. Earth Planet. Sci. Lett. 199, 173–184. Behncke, B., Branca, S., Corsaro, R.A., De Beni, E., Miraglia, L., Proietti, C., 2014. The 2011–2012 summit activity of Mount Etna: birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 270, 10–21. Bonadonna, C., Costa, A., 2012. Estimating the volume of tephra deposits: a new simple strategy. Geology 40 (5), 415–418. http://dx.doi.org/10.1130/G32769. Bonaccorso, A., 2006. Esplosive activity at Mt. Etna summit craters and source mod- elling by using high precision continuous tilt. J. Volcanol. Geotherm. Res. 158, 221–234. Bonaccorso, A., Bonforte, A., Calvari, S., Del Negro, C., Di Grazia, G., Ganci, G., Neri, M., Vicari, A., Boschi, E., 2011. The initial phases of the 2008–2009 Mount Etna eruption: a multidisciplinary approach for hazard assessment. J. Geophys. Res. 116, B03203. http://dx.doi.org/10.1029/2010JB007906. Bonaccorso, A., Calvari, S., Linde, A., Sacks, S., Boschi, E., 2012. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cam- eras during the 15 March 2007 Vulcanian paroxysm at Stromboli volcano. Earth Planet. Sci. Lett. 357–358, 249–256. http://dx.doi.org/10.1016/j.epsl.2012.09.009. Bonaccorso, A., Calvari, S., Currenti, G., Del Negro, C., Ganci, G., Linde, A., Napoli, R., Sacks, S., Sicali, A., 2013a. From source to surface: dynamics of Etna’s lava foun- tains investigated by continuous strain, magnetic, ground and satellite thermal data. Bull. Volcanol. 75, 690. http://dx.doi.org/10.1007/500445-013-0690. Bonaccorso, A., Currenti, G., Linde, A., Sacks, S., 2013b. New data from borehole strainmeters to infer lava fountain sources (Etna 2011–2012). Geophys. Res. Lett. 40 (14), 3579–3584. http://dx.doi.org/10.1002/grl.50692. Bonaccorso, A., Calvari, S., 2013. Major effusive eruptions and recent lava fountains: balance between expected and erupted magma volumes at Etna volcano. Geo- phys. Res. Lett. 40, 6069–6073. http://dx.doi.org/10.1002/2013GL058291. Bonaccorso, A., Calvari, S., Linde, A., Sacks, S., 2014. Eruptive processes leading to the most explosive lava fountain at Etna volcano: the 23 November 2013 episode. Geophys. Res. Lett. 41, 4912–4919. http://dx.doi.org/10.1002/2014GL060623. Bonaccorso, A., Linde, A., Currenti, G., Sacks, S., Sicali, A., 2016. The borehole dilatometers network of Mt. Etna: a powerful tool to detect and infer volcano dynamics. Geophys. Res. SE 121. http://dx.doi.org/10.1002/2016JB012914. Calvari, S., Neri, M., Pinkerton, H., 2002. Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J. Volcanol. Geotherm. Res. 119, 107–123. Calvari, S., Salerno, G.G., Spampinato, L., Gouhier, M., La Spina, A., Pecora, E., Harris, A.J.L., Labazuy, P., Biale, E., Boschi, E., 2011. An unloading foam model to con- strain Etna’s 11–13 January 2011 lava fountaining episode. J. Geophys. Res. 116, B11207. http://dx.doi.org/10.1029/2011JB008407. Carbone, D., Zuccarello, L., Messina, A., Scollo, S., Rymer, H., 2015. Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna. Sci. Rep. 5, 18049. http://dx.doi.org/10.1038/srep18049. Castruccio, A., Clavero, J., Segura, A., Samaniego, P., Roche, O., Le Pennec, J.L., Droguett, B., 2016. Eruptive parameters and dynamics of the April 2015 sub- Plinian eruptions of Calbuco volcano (southern Chile). Bull. Volcanol. 78, 62. http://dx.doi.org/10.1007/s00445-016-1058-8. Currenti, G., Bonaccorso, A., Del Negro, C., Scandura, D., Boschi, E., 2010. Elasto- plastic modeling of volcano ground deformation. Earth Planet. Sci. Lett. 296, 3–4, 311–318.De Beni, E., Behncke, B., Branca, S., Nicolosi, I., Carluccio, R., D’Ajello Caracciolo, F., Chiappini, M., 2015. The continuing story of Etna’s New Southeast Crater (2012–2014): evolution and volume calculations based on field surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res. 303, 175–186. Dominguez, L., Pioli, L., Bonadonna, C., Connor, C.B., Andronico, D., Harris, A.J.L., Ripepe, M., 2016. Quantifying unsteadiness and dynamics of pulsatory volcanic activity. Earth Planet. Sci. Lett. 444, 160–168. http://dx.doi.org/10.1016/j.epsl. 2016.03.048. Donnadieu, F., Freville, P., Hervier, C., Coltelli, M., Scollo, S., Prestifilippo, M., Valade, S., Rivet, S., Cacault, P., 2016. Near-source Doppler radar monitoring of tephra plumes at Etna. J. Volcanol. Geotherm. Res. 312, 26–39. http://dx.doi.org/10. 1016/j.jvolgeores.2016.01.009. Gambino, S., Cannata, A., Cannavò, F., La Spina, A., Palano, M., Sciotto, M., Spamp- inato, L., Barberi, G., 2016. The unusual 28 December 2014 dike- fed paroxysm at Mount Etna: timing and mechanism from a multidisciplinary perspective. J. Geophys. Res., Solid Earth 120. http://dx.doi.org/10.1002/2015JB012379. Ganci, G., Harris, A.J.L., Del Negro, C., Guéhenneux, Y., Cappello, A., Labazuy, P., Cal- vari, S., Gouhier, M., 2012. A year of fountaining at Etna: volumes from SEVIRI. Geophys. Res. Lett. 39, L06305. http://dx.doi.org/10.1029/2012GL051026. Ganci, G., James, M.R., Calvari, S., Negro, C., 2013. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 40, 5058–5063. http://dx. doi.org/10.1002/grl.50983. Gouhier, M., Harris, A., Calvari, S., Labazuy, P., Guéhenneux, Y., Donnadieu, F., Valade, S., 2012. Lava discharge during Etna’s January 2011 fire foun- tain tracked using MSG-SEVIRI. Bull. Volcanol. 74, 787–793. http://dx.doi.org/ 10.1007/s00445-011-0572-y. Harris, A.J.L., Murray, J.B., Aries, S.E., Davies, M.A., Flynn, L.P., Wooster, M.J., Wright, R., Rothery, D.A., 2000. Effusion rate trends at Etna and Krafla and their impli- cations for eruptive mechanisms. J. Volcanol. Geotherm. Res. 102, 237–270. Harris, A.J.L., Neri, M., 2002. Volumetric observations during paroxysmal eruption sat Mount Etna: pressurized drainage of a shallow chamber or pulsed supply? J. Volcanol. Geotherm. Res. 116, 79–95. Harris, A.J.L., Rose, W.I., Flynn, L.P., 2003. Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull. Volcanol. 65, 77–89. Harris, A.J.L., Bailey, J., Calvari, S., Dehn, J., 2005. Heat loss measured at a lava chan- nel and its implications for down-channel cooling and rheology. Spec. Pap., Geol. Soc. Am. 396, 125–146. Head, J.W.I., Wilson, L., 1987. Lava fountain heights at Pu’u ’O’o, Kilauea, Hawaii: indicators of amount and variations of exolved magma volatiles. J. Geophys. Res. 92 (13), 13715–13719. Hreinsdóttir, S., 2014. Volcanic plume height correlated with magma pressure change at Grímsvötn Volcano, Iceland. Nat. Geosci. 7. http://dx.doi.org/10.1038/ NGEO2044. Iguchi, M., Yakiwara, H., Tameguri, T., Hendrasto, M., Hirabayashi, J., 2008. Mecha- nism of explosive eruption revealed by geophysical observations at the Saku- rajima, Suwanosejima and Semeru volcanoes. J. Volcanol. Geotherm. Res. 178, 1–9. http://dx.doi.org/10.1016/j.jvolgeores.2007.10.010. Iguchi, M., 2016. Method for real-time evaluation of discharge rate of volcanic ash – case study on intermittent eruptions at the Sakurajima volcano, Japan. J. Dis- aster Res. 11 (1). Mastin, L.G., et al., 2009. A multidisciplinary effort to assign realistic source param- eters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 186, 10–21. Marzano, F.S., Picciotti, E., Montopoli, M., Vulpiani, G., 2013. Inside Volcanic clouds. Remote sensing of ash plumes using microwave weather radars. Am. Meteorol. Soc., 1567–1586. http://dx.doi.org/10.1175/BaMs-d-11-00160.1. Montanaro, C., Scheu, B., Gudmundsson, M.T., Vogfjörd, K., Reynolds, H.I., Dürig, T., Strehlow, K., Rott, S., Reuschlé, T., Dingwell, D.B., 2016. Multidisciplinary con- straints of hydrothermal explosions based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland. Earth Planet. Sci. Lett. 434, 308–319. http://dx.doi. org/10.1016/j.epsl.2015.11.043. Neri, M., De Maio, M., Crepaldi, S., Suozzi, E., Lavy, M., Marchionatti, F., Calvari, S., Buongiorno, F., 2017. Topographic maps of Mount Etna’s summit craters area, updated to December 2015. J. Maps 13 (2), 674–683. http://dx.doi.org/10.1080/ 17445647.2017.1352041. Nicholson, E.J., Mather, T.A., Pyle, D.M., Odbert, H.M., Christopher, T., 2013. Cycli- cal patterns in volcanic degassing revealed by SO2 flux timeseries analysis: an application to Soufrière Hills Volcano, Montserrat. Earth Planet. Sci. Lett. 375, 209–221. http://dx.doi.org/10.1016/j.epsl.2013.05.032. Ort, M.H., Di Muro, A., Michon, L., Bachèlery, P., 2016. Explosive eruptions from the interaction of magmatic and hydrothermal systems during flank extension: the Bellecombe Tephra of Piton de La Fournaise (La Réunion Island). Bull. Vol- canol. 78 (5). http://dx.doi.org/10.1007/s00445-015-0998-8. Parfitt, E.A., 2004. A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 134, 77–107. http://dx.doi.org/10.1016/j.jvolgeores. 2004.01.002. Robin, C., Camus, G., Gourgaud, A., 1991. Eruptive and magmatic cycles at Fuego de Colima volcano (Mexico). J. Volcanol. Geotherm. Res. 45, 209–225. Roelloffs, E.A., Linde, A.T., 2007. Borehole observations and continuous strain and fluid pressure. In: Dzurisin, D. (Ed.), Volcano Deformation Geodetic Measur- ments Tecniques. Springer-Verlag, pp. 305–322. Sigmarsson, O., Vlastelic, I., Andreasen, R., Bindeman, I., Devidal, J.-L., Moune, S., Kieiding, J.K., Larsen, G., Hoskuldsson, A., Thordarson, T., 2011. Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2, 271–281. http://dx.doi.org/10.5194/se-2-271-2011. Spanu, A., de’Michieli Vitturi, M., Barsotti, S., 2016. Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized ex- plosive eruptions at Etna volcano. Bull. Volcanol. 78, 59. http://dx.doi.org/ 10.1007/s00445-016-1051-2. Sparks, R.S.J., Bursik, M.I., Carey, S.N., Gilbert, J.S., Glaze, L.S., Sigurdsson, H., Woods, A.W., 1997. Volcanic Plumes. Wiley. 574 pp. Takeo, M., Maehara, Y., Ichihara, M., Ohminato, T., Kamata, R., Oikawa, J., 2013. Ground deformation cycles in a magma-effusive stage, and sub-Plinian and Vul- canian eruptions at Kirishima volcanoes, Japan. J. Geophys. Res., Solid Earth 118, 4758–4773. http://dx.doi.org/10.1002/jgrb.50278. Vergniolle, S., Ripepe, M., 2008. From strombolian explosions to fire fountains at Etna volcano (Italy): what do we learn from acoustic measurements? Geol. Soc. (Lond.) Spec. Publ. 307, 103–124. http://dx.doi.org/10.1144/SP307.7. Vulpiani, G., Ripepe, M., Valade, S., 2016. Mass discharge rate retrieval combin- ing weather radar and thermal camera observations. J. Geophys. Res., Solid Earth 121, 5679–5695. http://dx.doi.org/10.1002/2016JB013191. Webb, E.B., Varley, N.R., Pyle, D.M., Mather, T.A., 2014. Thermal imaging and analysis of short-lived Vulcanian explosions at Volcán de Colima, Mexico. J. Volcanol. Geotherm. Res. 278–279, 132–145. Wilson, L., 1980. Relationships between pressure, volatile content and ejecta veloc- ity. J. Volcanol. Geotherm. Res. 8, 297–313. Wilson, L., Head, J.W., 1981. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86 (B4), 2971–3000. Yaqui, M., Koyaguchi, T., 2004. Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone. Bull. Volcanol. 66, 243–262.en
dc.description.obiettivoSpecifico5V. Dinamica dei processi eruttivi e post-eruttivien
dc.description.journalTypeJCR Journalen
dc.contributor.authorBonaccorso, Alessandroen
dc.contributor.authorCalvari, Soniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-4770-6006-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Bonaccorso & Calvari 2017-Etna fountains.pdf2.68 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

15
checked on Feb 10, 2021

Page view(s)

667
checked on Apr 24, 2024

Download(s)

10
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric