Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10571
DC FieldValueLanguage
dc.date.accessioned2017-06-01T08:11:31Zen
dc.date.available2017-06-01T08:11:31Zen
dc.date.issued2017-04en
dc.identifier.urihttp://hdl.handle.net/2122/10571en
dc.description.abstractThe ground-motion median and standard deviation of empirical groundmotion prediction equations (GMPEs) are usually poorly constrained in the nearsource region due to the general lack of strong-motion records. Here we explore the use of a deterministic–stochastic simulation technique, specifically tailored to reproduce directivity effects, to evaluate the expected ground motion and its variability at a near-source site, and seek a strategy to overcome the known GMPEs limitations. To this end, we simulated a large number of equally likely scenario events for three earthquake magnitudes (Mw 7.0, 6.0, and 5.0) and various source-to-site distances. The variability of the explored synthetic ground motion is heteroscedastic, with smaller values for larger earthquakes. The standard deviation is comparable with empirical estimates for smaller events and reduces by 30%–40% for stronger earthquakes. We then illustrate how to incorporate directivity effects into probabilistic seismichazard analysis (PSHA). This goal is pursued by calibrating a set of synthetic GMPEs and reducing their aleatory variability (∼50%) by including a predictive directivity term that depends on the apparent stress parameter obtained through the simulation method. Our results show that, for specific source-to-site configurations, the nonergodic PSHA is very sensitive to the additional epistemic uncertainty that may augment the exceedance probabilities when directivity effects are maximized. The proposed approach may represent a suitable way to compute more accurate hazard estimates.en
dc.description.sponsorshipThis work was supported by the project MASSIMO—Cultural Heritage Monitoring in Seismic Area, PON01/02710—coordinated by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and funded by the Italian Ministry of Education, University and Research and by the Seismic Hazard Center of Istituto Nazionale di Geofisica e Vulcanologia (Centro per la Pericolosità Sismica [CPS]).en
dc.language.isoEnglishen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries2/107 (2017)en
dc.subjectseismogenic sourcesen
dc.subjectfinite fault simulationsen
dc.subjectnear sourceen
dc.subjectdirectivity effectsen
dc.subjectground motion variabilityen
dc.subjectseismic hazarden
dc.subjectSouthern Italyen
dc.titleGround-motion variability for single site and single source through deterministic stochastic method simulations: implications for PSHAen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber966-983en
dc.identifier.URLhttp://www.bssaonline.org/content/107/2/966.shorten
dc.subject.INGV04.06. Seismologyen
dc.subject.INGV05.06. Methodsen
dc.identifier.doi10.1785/0120150377en
dc.relation.referencesAkkar, S., and J. J. Bommer (2007a). Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East, Bull. Seismol. Soc. Am. 97, 511–530, doi: 10.1785/0120060141. Akkar, S., and J. J. Bommer (2007b). Prediction of elastic displacement response spectra in Europe and the Middle East, Earthq. Eng. Struct. Dynam. 36, 1275–1301, doi: 10.1002/eqe.679. Al Atik, L., N. Abrahamson, J. J. Bommer, F. Scherbaum, F. Cotton, and N. Kuehn (2010). The variability of ground-motion prediction models and its components, Seismol. Res. Lett. 81, 794–801, doi: 10.1785/ gssrl.81.5.794. Ambraseys, N. N., J. Douglas, S. K. Sarma, and P. M. Smit (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Vertical peak ground acceleration and spectral acceleration, Bull. Earthq. Eng. 3, 55–73, doi: 10.1007/s10518-005-0186-x. Ameri, G., A. Emolo, F. Pacor, and F. Gallovic (2011). Ground-motion simulations for the 1980 M 6.9 Irpinia earthquake (southern Italy)and scenario events, Bull. Seismol. Soc. Am. 101, 1136–1151, doi: 10.1785/0120100231. Ameri, G., F. Gallovic, F. Pacor, and A. Emolo (2009). Uncertainties in strong ground-motion prediction with finite-fault synthetic seismograms: An application to the 1984 M 5.7 Gubbio, Central Italy, earthquake, Bull. Seismol. Soc. Am. 99, 647–663, doi: 10.1785/0120080240. Ameri, G., F. Pacor, G. Cultrera, and G. Franceschina (2008). Deterministic ground-motion scenarios for engineering applications: The case of Thessaloniki, Greece, Bull. Seismol. Soc. Am. 98, 1289–1303, doi: 10.1785/0120070114. American Society of Civil Engineers (ASCE) (2005). Minimum Design Loads for Buildings and Other Structures, (ASCE/SEI 7-05), ASCE, Reston, Virginia. American Society of Civil Engineers (ASCE) (2010). Minimum Design Loads for Buildings and Other Structures, (ASCE/SEI 7-10), ASCE, Reston, Virginia. Anderson, J. G., and J. N. Brune (1999). Probabilistic seismic hazard analysis without the ergodic assumption, Seismol. Res. Lett. 70, 19–28, doi: 10.1785/gssrl.70.1.19. Anderson, J. G., and S. E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seismol. Soc. Am. 74, 1969–1993. Atkinson, G. M. (2015). Ground-motion prediction equation for smallto- moderate events at short hypocentral distances, with application to induced-seismicity hazards, Bull. Seismol. Soc. Am. 105, 981–992, doi: 10.1785/0120140142. Atkinson, G. M., and D. M. Boore (2006). Earthquake ground-motion prediction equations for eastern North America, Bull. Seismol. Soc. Am. 96, 2181–2205. Barberi, G., M. T. Cosentino, A. Gervasi, I. Guerra, G. Neri, and B. Orecchio (2004). Crustal seismic tomography in the Calabrian Arc region, south Italy, Phys. Earth Planet. In. 147, 297–314, doi: 10.1016/j. pepi.2004.04.005. Basili, R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M. M. Tiberti, and E. Boschi (2008). The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology, Tectonophysics 453, 20–43, doi: 10.1016/j. tecto.2007.04.014. Bazzurro, P., and C. A. Cornell (1999). Disaggregation of seismic hazard, Bull. Seismol. Soc. Am. 89, 501–520. Bernard, P., and R. Madariaga (1984). A new asymptotic method for the modeling of near-field accelerograms, Bull. Seismol. Soc. Am. 74, 539–557. Bindi, D., M. Massa, L. Luzi, G. Ameri, F. Pacor, R. Puglia, and P. Augliera (2014). Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset, Bull. Earthq. Eng. 12, 391–430, doi: 10.1007/s10518-013-9525-5. Bommer, J. J. (2002). Deterministic vs. probabilistic seismic hazard assessment: An exaggerated and obstructive dichotomy, J. Earthq. Eng. 6, 43–73, doi: 10.1080/13632460209350432. Bommer, J. J., and N. A. Abrahamson (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bull. Seismol. Soc. Am. 96, 1967–1977, doi: 10.1785/0120060043. Bommer, J. J., P. J. Stafford, J. E. Alarcon, and S. Akkar (2007). The influence of magnitude range on empirical ground-motion prediction, Bull. Seismol. Soc. Am. 97, 2152–2170, doi: 10.1785/0120070081. Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am. 73, 1865–1894. Boore, D. M. (2003). Simulation of ground motion using the stochastic method, Pure Appl. Geophys. 160, 635–676, doi: 10.1007/PL00012553. Boore, D. M., and W. B. Joyner (1997). Site amplifications for generic rock sites, Bull. Seismol. Soc. Am. 87, 327–341. Boore, D. M., J. P. Stewart, E. Seyhan, and G. M. Atkinson (2014). NGAWest2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes, Earthq. Spectra 30, 1057–1085, doi: 10.1193/070113eqs184m. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009. Building Seismic Safety Council (BSSC) (2009). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-750), Federal Emergency Management Agency, Washington, D.C. Carafa, M. M. C., and S. Barba (2013). The stress field in Europe: Optimal orientations with confidence limits, Geophys. J. Int. 193, 531–548, doi: 10.1093/gji/ggt024. Carvalho, A., G. Zonno, G. Franceschina, J. Bilé Serra, and A. Campos Costa (2008). Earthquake shaking scenarios for the metropolitan area of Lisbon, Soil Dynam. Earthq. Eng. 28, 347–364, doi: 10.1016/j.soildyn. 2007.07.009. Chapman, M. C. (1995). A probabilistic approach to ground-motion selection for engineering design, Bull. Seismol. Soc. Am. 85, 937–942. Convertito, V. (2006). Seismic-hazard assessment for a characteristic earthquake scenario: An integrated probabilistic–deterministic method, Bull. Seismol. Soc. Am. 96, 377–391, doi: 10.1785/0120050024. Cultrera, G., A. Cirella, E. Spagnuolo, A. Herrero, E. Tinti, and F. Pacor (2010). Variability of kinematic source parameters and its implication on the choice of the design scenario, Bull. Seismol. Soc. Am. 100, 941– 953, doi: 10.1785/0120090044. D'Amico, S., B. Orecchio, D. Presti, A. Gervasi, L. Zhu, I. Guerra, G. Neri, and R. Herrmann (2011). Testing the stability of moment tensor solutions for small earthquakes in the Calabro-Peloritan Arc region (southern Italy), Boll. Geof. Teor. Appl. 52, 283–298, doi: 10.4430/ bgta0009. DISS Working Group (2010). Database of Individual Seismogenic Sources (DISS), Version 3.1.1: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas, Istituto Nazionale di Geofisica e Vulcanologia, doi: 10.6092/INGV.IT-DISS3.1.1. Dreger, D. S., and T. H. Jordan (2015). Introduction to the Focus Section on validation of the SCEC broadband platform V14.3 simulation methods, Seismol. Res. Lett. 86, 15–16, doi: 10.1785/0220140233. Ericson, C. A. (2005). Hazard Analysis Techniques for System Safety, John Wiley & Sons, Fredericksburg, Virginia. Faccioli, E. (2013). Recent evolution and challenges in the seismic hazard analysis of the Po Plain region, northern Italy, Bull. Earthq. Eng. 11, 5–33, doi: 10.1007/s10518-012-9416-1. Goulet, C. A., N. A. Abrahamson, P. G. Somerville, and K. E. Wooddell (2015). The SCEC broadband platform validation exercise: Methodology for code validation in the context of seismic-hazard analyses, Seismol. Res. Lett. 86, 17–26, doi: 10.1785/0220140104. Graves, R., T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve, C. Kesselman, P. Maechling, G. Mehta, K. Milner, et al. (2010). Cyber- Shake: A physics-based seismic hazard model for southern California, Pure Appl. Geophys. 168, 367–381, doi: 10.1007/s00024-010-0161-6. Gruppo di Lavoro MPS (2004). Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM del 20 marzo 2003 n. 3274, All. 1, Rapporto conclusivo per il Dipartimento della Protezione Civile, aprile 2004, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Milano-Roma, Italy, 163 pp., available at http://zonesismiche.mi.ingv. it/ (last accessed May 2015) (in Italian). Hanks, T. C., and H. Kanamori (1979). A moment magnitude scale, J. Geophys. Res. 84, 2348, doi: 10.1029/JB084iB05p02348. International Atomic Energy Agency (IAEA) (2002). Evaluation of Seismic Hazards for Nuclear Power Plants: Safety Guide, IAEA Safety Standards Series, no. NS-G-3.3, IAEA, Vienna, Austria, ISSN: 1020–525X. International Atomic Energy Agency (IAEA) (2010). Seismic Hazard in Site Evaluation for Nuclear Installations: Safety Guide, IAEA Safety Standards Series, no. SSG-9, IAEA, Vienna, Austria, ISSN: 1020– 525X. Kanamori, H., and D. L. Anderson (1975). Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am. 65, 1073–1095. Locati, M., R. Camassi, and M. E. Stucchi (2011). DBMI11, la versione 2011 del Database Macrosismico Italiano, Milano, Bologna, doi: 10.6092/INGV.IT-DBMI11 (in Italian). Lorito, S., J. Selva, R. Basili, F. Romano, M. M. Tiberti, and A. Piatanesi (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps, Geophys. J. Int. 200, 574–588, doi: 10.1093/gji/ggu408. Luzi, L., D. Bindi, R. Puglia, F. Pacor, and A. Oth (2014). Single-station sigma for Italian strong-motion stations, Bull. Seismol. Soc. Am. 104, no. 1, 467–483, doi: 10.1785/0120130089. Luzi, L., S. Hailemikael, D. Bindi, F. Pacor, F. Mele, and F. Sabetta (2008). ITACA (ITalian ACcelerometric Archive): A web portal for the dissemination of Italian strong-motion data, Seismol. Res. Lett. 79, 716–722, doi: 10.1785/gssrl.79.5.716. Martinelli, F., and C. Meletti (2008). AWebGIS application for rendering seismic hazard data in Italy, Seismol. Res. Lett. 79, 68–78, doi: 10.1785/ gssrl.79.1.68. Marzocchi, W., M. Taroni, and J. Selva (2015). Accounting for epistemic uncertainty in PSHA: Logic tree and ensemble modeling, Bull. Seismol. Soc. Am. 105, no. 4, 2151–2159. McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop, Bull. Seismol. Soc. Am. 85, 1275–1284. McGuire, R. K. (2001). Deterministic vs. probabilistic earthquake hazards and risks, Soil Dynam. Earthq. Eng. 21, 377–384, doi: 10.1016/S0267- 7261(01)00019-7. Meletti, C., G. M. Calvi, and M. Stucchi (2007). Progetto S1: proseguimento della assistenza al DPC per il completamento e la gestione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274/2003 e progettazione di ulteriori sviluppi, DPC-INGV S1 Project, Final Report, available at http://esse1.mi.ingv.it/data/S1_Rendicontazione_ Scientifica_finale_S1.pdf (in Italian). Meletti, C., F. Galadini, G. Valensise, M. Stucchi, R. Basili, S. Barba, G. Vannucci, and E. Boschi (2008). A seismic source zone model for the seismic hazard assessment of the Italian territory, Tectonophysics 450, 85–108, doi: 10.1016/j.tecto.2008.01.003. Motazedian, D., and G. M. Atkinson (2005). Stochastic finite-fault modeling based on a dynamic corner frequency, Bull. Seismol. Soc. Am. 95, 995–1010. Mualchin, L. (1996). A Technical Report to Accompany the CALTRANS California Seismic Hazard Map 1996 (Based on Maximum Credible Earthquakes), California Department of Transportation Engineering Service Center, Sacramento, California. Newhall, C., and R. Hoblitt (2002). Constructing event trees for volcanic crises, Bull. Volcanol. 64, 3–20, doi: 10.1007/s004450100173. Ordaz, M., F. Martinelli, V. D'Amico, and C. Meletti (2013). CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment, Seismol. Res. Lett. 84, 495–504, doi: 10.1785/0220120067. Orecchio, B., D. Presti, C. Totaro, I. Guerra, and G. Neri (2011). Imaging the velocity structure of the Calabrian Arc region (southern Italy) through the integration of different seismological data, Boll. Geof. Teor. Appl. 52, 625–638, doi: 10.4430/bgta0023. Pacor, F., G. Cultrera, A. Mendez, and M. Cocco (2005). Finite fault modeling of strong ground motions using a hybrid deterministic–stochastic approach, Bull. Seismol. Soc. Am. 95, 225–240, doi: 10.1785/0120030163. Pacor, F., R. Paolucci, L. Luzi, F. Sabetta, A. Spinelli, A. Gorini, M. Nicoletti, S. Marcucci, L. Filippi, and M. Dolce (2011). Overview of the Italian strong motion database ITACA 1.0, Bull. Earthq. Eng. 9, 1723–1739, doi: 10.1007/s10518-011-9327-6. Parolai, S., and D. Bindi (2004). Influence of soil-layer properties on k evaluation, Bull. Seismol. Soc. Am. 94, 349–356, doi: 10.1785/0120030022. Restrepo-Velez, L. F., and J. J. Bommer (2003). An exploration of the nature of the scatter in ground-motion prediction equations and the implications for seismic hazard assessment, J. Earthq. Eng. 7, 171–199, doi: 10.1142/S1363246903001000.Rovelli, A., O. Bonamassa, M. Cocco, M. Di Bona, and S. Mazza (1988). Scaling laws and spectral parameters of the ground motion in active extensional areas in Italy, Bull. Seismol. Soc. Am. 78, 530–560. Rovida, A., R. Camassi, P. Gasperini, and M. e. Stucchi (2011). CPTI11, The 2011 Version of the Parametric Catalogue of Italian Earthquakes, Istituto Nazionale di Geofisica e Vulcanologia, Milano, Bologna, doi: 10.6092/INGV.IT-CPTI11. Ruiz-García, J. (2011). Inelastic displacement ratios for seismic assessment of structures subjected to forward-directivity near-fault ground motions, J. Earthq. Eng. 15, 449–468, doi: 10.1080/13632469.2010.498560. Selva, J., R. Tonini, I. Molinari, M. M. Tiberti, F. Romano, A. Grezio, D. Melini, A. Piatanesi, R. Basili, and S. Lorito (2016). Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA), Geophys. J. Int. 205, 1780–1803, doi: 10.1093/gji/ggw107. Spudich, P., and L. N. Frazer (1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop, Bull. Seismol. Soc. Am. 74, 2061–2082. Strasser, F., J. Bommer, and N. Abrahamson (2008). Estimating groundmotion variability: Issues, insights & challenges, The 14th World Conf. on Earthquake Engineering, Beijing, China, 12–17 October 2008. Stucchi, M., C. Meletti, V. Montaldo, H. Crowley, G. M. Calvi, and E. Boschi (2011). Seismic hazard assessment (2003–2009) for the Italian Building Code, Bull. Seismol. Soc. Am. 101, 1885–1911, doi: 10.1785/ 0120100130. Villani, M., and N. A. Abrahamson (2015). Repeatable site and path effects on the ground-motion sigma based on empirical data from southern California and simulated waveforms from the CyberShake platform, Bull. Seismol. Soc. Am. 105, no. 5, 2681–2695, doi: 10.1785/0120140359. Villani, M., E. Faccioli, M. Ordaz, and M. Stupazzini (2014). Highresolution seismic hazard analysis in a complex geological configuration: The case of the Sulmona basin in central Italy, Earthq. Spectra 30, 1801–1824, doi: 10.1193/1112911eqs288m. Yagoda-Biran, G., J. G. Anderson, H. Miyake, and K. Koketsu (2015). Between-event variance for large repeating earthquakes, Bull. Seismol. Soc. Am. 105, 2023–2040, doi: 10.1785/0120140196.en
dc.description.obiettivoSpecifico5T. Modelli di pericolosità sismica e da maremotoen
dc.description.journalTypeJCR Journalen
dc.contributor.authorD'Amico, Mariaen
dc.contributor.authorTiberti, Mara Monicaen
dc.contributor.authorRusso, Emilianoen
dc.contributor.authorPacor, Francescaen
dc.contributor.authorBasili, Robertoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1677-1294-
crisitem.author.orcid0000-0003-2504-853X-
crisitem.author.orcid0000-0002-1032-7002-
crisitem.author.orcid0000-0001-5745-0414-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
27_D'Amico_etal2017_BSSA.pdfPublished paper1.15 MBAdobe PDF
BSSA-D-15-00377_R3-2_lowres.pdfOpen Access2.71 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

7
checked on Feb 10, 2021

Page view(s)

715
checked on Apr 17, 2024

Download(s)

65
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric