Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10483
DC FieldValueLanguage
dc.contributor.authorallPoland, M.; USGS Cascades Volcano Observatoryen
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2017-03-22T10:29:56Zen
dc.date.available2017-03-22T10:29:56Zen
dc.date.issued2016-07en
dc.identifier.urihttp://hdl.handle.net/2122/10483en
dc.description.abstractContinuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m^3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea’s summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/121 (2016)en
dc.subjectKīlauea Volcano; gravity changes; lava lake; volcano monitoringen
dc.titleInsights into shallow magmatic processes at Kīlauea Volcano, Hawaiʻi, from a multiyear continuous gravity time seriesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5477–5492en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1002/2016JB013057en
dc.relation.referencesAnderson, K. R., M. P. Poland, A. Miklius, and J. H. Johnson (2015), Episodic deflation–inflation events at Kīlauea Volcano and implications for the shallow magma system, in Hawaiian Volcanoes From Source to Surface, edited by R. J. Carey, et al., pp. 229–250, American Geophysical Union, Washington, D.C., doi:10.1002/9781118872079.ch11. Andò, B., and D. Carbone (2006), A new computational approach to reduce the signal from continuously recording gravimeters for the effect of atmospheric temperature, Phys. Earth Planet. In., 159(3–4), 247–256, doi:10.1016/j.pepi.2006.07.009. Bagnardi, M., M. P. Poland, D. Carbone, S. Baker, M. Battaglia, and F. Amelung (2014), Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009–2012, J. Geophys. Res., 119(9), 7288–7305, doi:10.1002/2014JB011506. Battaglia, M., C. Roberts, and P. Segall (1999), Magma intrusion beneath Long Valley Caldera confirmed by temporal changes in gravity, Science, 285(5436), 2119–2122, doi:10.1126/science.285.5436.2119. Battaglia, M., P. Segall, and C. Roberts (2003), The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data, J. Volcanol. Geotherm. Res., 127(3–4), 219-245, doi:10.1016/S0377-0273(03)00171-9. Berrino, G., H. Rymer, G. C. Brown, and G. Corrado (1992), Gravity-height correlations for unrest at calderas, J. Volcanol. Geotherm. Res., 53(1–4), 11–26, doi:10.1016/0377-0273(92)90071-K. Berrino, G., G. Corrado, and U. Riccardi (2006), On the Capability of Recording Gravity stations to Detect Signals Coming from Volcanic Activity: the Case of Vesuvius, J. Volcanol. Geotherm. Res., 150(1–3), 270–282, doi:10.1016/j.jvolgeores.2005.07.015. Branca, S., D. Carbone, and F. Greco (2003), Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences, Geophys. Res. Lett., 30(20), doi:10.1029/2003GL018250. Carbone, D., and M. P. Poland (2012), Gravity fluctuations induced by magma convection at Kīlauea Volcano, Hawai‘i, Geology, 40(9), 803–806, doi:10.1130/G33060.1. Carbone, D., G. Budetta, F. Greco, and H. Rymer (2003), Combined discrete and continuous gravity observations at Mount Etna, J. Volcanol. Geotherm. Res., 123(1–2), 123–135, doi:10.1016/S0377-0273(03)00032-5. Carbone, D., L. Zuccarello, and G. Saccorotti (2008), Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period, Geophys. Res. Lett., 35(6), doi:10.1029/2008GL033212. Carbone, D., P. Jousset, and C. Musumeci (2009), Gravity “steps” at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes?, Geophys. Res. Lett., 36(L02301), doi:10.1029/2008GL036179. Carbone, D., M. P. Poland, M. R. Patrick, and T. R. Orr (2013), Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i, Earth Planet. Sci. Lett., 376, 178–185, doi:10.1016/j.epsl.2013.06.024. Carey, R. J., M. Manga, W. Degruyter, D. Swanson, B. Houghton, T. Orr, and M. Patrick (2012), Externally triggered renewed bubble nucleation in basaltic magma: The 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA, J. Geophys. Res., 117(B11202), doi:10.1029/2012JB009496. Carey, R. J., M. Manga, W. Degruyter, H. Gonnermann, D. Swanson, B. Houghton, T. Orr, and M. Patrick (2013), Convection in a volcanic conduit recorded by bubbles, Geology, 41(4), 395–398, doi:10.1130/G33685.1. Carey, R. J., L. Swavely, D. A. Swanson, B. F. Houghton, T. R. Orr, T. Elias, and J. Sutton (2015), Onset of a basaltic explosive eruption from Kīlauea's summit in 2008, in Hawaiian Volcanoes From Source to Surface, American Geophysical Union Monograph 208, edited by R. Carey, V. Cayol, M. Poland, and D. Weis, pp. 421-437, American Geophysical Union, Washington, D.C., doi:10.1002/9781118872079.ch19. Chouet, B., and P. Dawson (2013), Very-long-period conduit oscillations induced by rockfalls at Kilauea Volcano, Hawaii, J. Geophys. Res., 118(10), 5352–5371, doi:10.1002/jgrb.50376. Dzurisin, D., L. A. Anderson, G. P. Eaton, R. Y. Koyanagi, P. W. Lipman, J. P. Lockwood, R. T. Okamura, G. S. Puniwai, M. K. Sako, and K. M. Yamashita (1980), Geophysical observations of Kilauea Volcano, Hawaii; 2, Constraints on the magma supply during November 1975-September 1977, J. Volcanol. Geotherm. Res., 7(3-4), 241–269, doi:10.1016/0377-0273(80)90032-3. Gottsmann, J., R. Carniel, N. Coppo, L. Wooller, S. Hautmann, and H. Rymer (2007), Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: Multiparameter insights from Nisyros, Greece, Geophys. Res. Lett., 34(L07307), doi:10.1029/2007GL029594. Grinsted, A., J.C. Moore, and S. Jevrejeva (2004), Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Proc. Geophys., 11, 561–566, doi:10.5194/npg-11-561-2004. Hautmann, S., J. Gottsmann, A. G. Camacho, M. Van Camp, and N. Fournier (2014), Continuous and campaign-style gravimetric investigations on Montserrat 2006 to 2009, in The Eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010, Geological Society of London Memoir 39, edited by G. Wadge, R. E. A. Robertson, and B. Voight, pp.241–251, doi:10.1144/M39.14. Houghton, B. F., D. A. Swanson, R. J. Carey, J. Rausch, and A. J. Sutton (2011), Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kilauea volcano, Geology, 39(3), 263–266, doi:10.1130/G31509.1. Hurwitz, S., and M. J. S. Johnston (2003), Groundwater level changes in a deep well in response to a magma intrusion event on Kilauea Volcano, Hawai'i, Geophys. Res. Lett., 30, 2173, doi:2110.1029/2003GL018676. Jahr, T., H. Letz, and G. Jentzsch (2006), Monitoring fluid induced deformation of the earth's crust: A large scale experiment at the KTB location/Germany, J. Geodyn., 41(1–3), 190–197, doi:10.1016/j.jog.2005.08.003. Johnson, D. J., F. Sigmundsson, and P. T. Delaney (2000), Comment on “Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence with application to the 1960 collapse of Kilauea volcano” by P.T. Delaney and D. F. McTigue, Bull. Volcanol., 61(7), 491–493, doi:10.1007/s004450050006. Johnson, D. J., A. A. Eggers, M. Bagnardi, M. Battaglia, M. P. Poland, and A. Miklius (2010), Shallow magma accumulation at Kīlauea Volcano, Hawai‘i, revealed by microgravity surveys, Geology, 38(12), 1139–1142, doi:10.1130/G31323.1. Jousset, P., S. Dwipa, F. Beauducel, T. Duquesnoy, and M. Diament (2000), Temporal gravity at Merapi during the 1993-1995 crisis: an insight into the dynamical behaviour of volcanoes, J. Volcanol. Geotherm. Res., 100(1–4), 289–320, doi:10.1016/S0377-0273(00)00141-4. Lisowski, M., 2007, Chapter 8: Analytical volcano deformation source models, in Dzurisin, D., Volcano Deformation: Geodetic Monitoring Techniques, Berlin: Springer-Praxis Books in Geophysical Sciences, p. 279–304. Miklius, A., P. Cervelli, M. Sako, M. Lisowski, S. Owen, P. Segall, J. Foster, K. Kamibayashi, and B. Brooks (2005), Global Positioning System Measurements on the Island of Hawai`i: 1997 through 2004, U.S. Geol. Surv. Open-File Rep., 2005-1425, 46 pp. Orr, T. R., W. A. Thelen, M. R. Patrick, D. A. Swanson, and D. C. Wilson (2013), Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawai‘i, Geology, 41(2), 207–210, doi:10.1130/G33564.1. Orr, T. R., M. P. Poland, M. R. Patrick, W. A. Thelen, A. J. Sutton, T. Elias, C. R. Thornber, C. Parcheta, and K. M. Wooten (2015), Kīlauea's 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu‘u ‘Ō ‘ō, in Hawaiian Volcanoes From Source to Surface, American Geophysical Union Monograph 208, edited by R. Carey, V. Cayol, M. Poland, and D. Weis, pp. 393-420, American Geophysical Union, Washington, D.C., doi:10.1002/9781118872079.ch18. Patrick, M., D. Wilson, D. Fee, T. Orr, and D. Swanson (2011), Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i, Bull. Volcanol., 73(9), 1179–1186, doi: 10.1007/s00445-011-0475-y. Patrick, M. R., T. Orr, L. Antolik, L. Lee, and K. Kamibayashi (2014), Continuous monitoring of Hawaiian volcanoes with thermal cameras, J. Appl. Volcanol., 3, 1, doi:10.1186/2191-5040-3-1 Patrick, M. R., K. R. Anderson, M. P. Poland, T. R. Orr, and D. A. Swanson (2015), Lava lake level as a gauge of magma reservoir pressure and eruptive hazard, Geology, 43(9), 831–834, doi:10.1130/G36896.1. Patrick, M. R., T. Orr, A. J. Sutton, E. Lev, W. Thelen, and D. Fee (2016a), Shallowly driven fluctuations in lava lake outgassing (gas pistoning), Kīlauea Volcano, Earth Planet. Sci. Lett., 433, 326–338, doi:10.1016/j.epsl.2015.10.052. Patrick, M. R., D. Swanson, and T. Orr (2016b), Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i, J. Appl. Volcanol., 5, 6, doi:10.1186/s13617-016-0047-0. Poland, M. P., A. Miklius, and E. K. Montgomery-Brown (2014), Magma supply, storage, and transport at shield-stage Hawaiian volcanoes, in Characteristics of Hawaiian Volcanoes, U.S. Geol. Surv. Prof. Pap. 1801, edited by M. P. Poland, C. M. Landowski, and T. J. Takahashi, pp. 179–234, U.S. Geological Survey, Reston, VA, doi:10.3133/pp18015. Richter, N., M. P. Poland, and P. R. Lundgren (2013), TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kīlauea Volcano, Hawai‘i, Geophys. Res. Lett., 40(7), 1279–1283, doi:10.1002/grl.50286. Rivalta, E., and P. Segall (2008), Magma compressibility and the missing source for some dike intrusions, Geophys. Res. Lett., 34(4), doi:10.1029/2007GL032521. Rymer, H. (1994), Microgravity change as a precursor to volcanic activity, J. Volcanol. Geotherm. Res., 61(3), 311–328, doi:10.1016/0377-0273(94)90011-6. Swanson, D., K. Wooten, and T. Orr (2009), Buckets of ash track tephra flux from Halema`uma`u Crater, Hawai`i, EOS Trans. Am. Geophys. Un., 90(46), 427, doi:10.1029/2009EO460003. Sutton, A. J., and T. Elias (2014), One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory, in Characteristics of Hawaiian Volcanoes, U.S. Geol. Surv. Prof. Pap. 1801, edited by M. P. Poland, C. M. Landowski, and T. J. Takahashi, pp. 295–320, U.S. Geological Survey, Reston, VA, doi:10.3133/pp18017. Telford, W. M., L. P. Geldart, R. E. Sheriff, and D. A. Keys (1981), Applied Geophysics, Cambridge University Press: Cambridge, 860 p. Van Camp, M., L. Métivier, O. De Viron, B. Meurers, and S. D. P. Willilams (2010), Characterizing long‐time scale hydrological effects on gravity for improved distinction of tectonic signals, J. Geophys Res., 115(B07407), doi:10.1029/2009JB006615. Welch, P. D. (1967), The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacous., 15(2), 70–73, doi:10.1109/TAU.1967.1161901. Wenzel, H. G. (1996) The nanogal software: data processing package Eterna 3.30, Bull. Inform. Marées Terrestres, 124, 9425–9439. Williams-Jones, G., H. Rymer, G. Mauri, J. Gottsmann, M. Poland, and D. Carbone (2008), Toward continuous 4D microgravity monitoring of volcanoes, Geophysics, 73(6), WA19–WA28. Witham, F., A. W. Woods, and C. Gladstone (2006), An analogue experimental model of depth fluctuations in lava lakes, Bull. Volcanol., 69(1), 51–56, doi: 10.1007/s00445-006-0055-8. Wilson, D., T. Elias, T. Orr, M. Patrick, J. Sutton, and D. Swanson (2008), Small explosion from new vent at Kilauea’s summit, EOS Trans. Am. Geophys. Un., 89(22), 203, doi:10.1029/2008EO220003. Wooten, K. M., C. R. Thornber, T. R. Orr, J. F. Ellis, and F. A. Trusdell (2009), Catalog of Tephra Samples from Kilauea's Summit Eruption, March-December 2008, U.S. Geol. Surv. Open-File Rep. 2009-1134, 26 pp, U.S. Geol. Surv., Reston, VA [http://pubs.usgs.gov/of/2009/1134/].en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.relation.eissn2156-2202en
dc.contributor.authorPoland, M.en
dc.contributor.authorCarbone, D.en
dc.contributor.departmentUSGS Cascades Volcano Observatoryen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptHawaiian Volcano Observatory, U.S. Geological Survey, Hawaii, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Poland_&_Carbone_2016-Journal_of_Geophysical_Research-_Solid_Earth.pdfpaper9.36 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

22
checked on Feb 10, 2021

Page view(s)

208
checked on Apr 17, 2024

Download(s)

1
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric