Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10477
Authors: Silber, I.* 
Price, C.* 
Schmidt, C.* 
Wüst, S.* 
Bittner, M.* 
Pecora, E.* 
Title: First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides
Journal: Journal of atmospheric and solar-terrestrial physics 
Series/Report no.: /155 (2017)
Publisher: Elsevier Science Limited
Issue Date: 1-Mar-2017
DOI: 10.1016/j.jastp.2016.08.014
Keywords: Airglow
Planetary waves
Atmospheric tides
Mesopause temperatures
Subject Classification01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques 
Abstract: The mesopause region (~90 km altitude) is the coldest region of our atmosphere, and is found at the boundary between the upper mesosphere and lower thermosphere. Ground-based spectrometers, which are sensitive to the emissions from the hydroxyl (OH*) airglow layer (lying at ~87 km altitude), are used to monitor the temperature variability within the mesosphere-lower-thermosphere (MLT), at high temporal resolution. The variability of the MLT region of the atmosphere is driven by momentum deposition from gravity waves, atmospheric tides and planetary waves. The displacement of air caused by these waves can produce strong temperature, wind and species concentration perturbations. In this study we present an analysis of 4-years of OH* rotational temperature data, acquired with the German Aerospace Center (DLR) GRIPS-10 (Ground Based Infrared P-branch Spectrometer) instrument, which was installed in Israel in November 2011. This instrument provided the first long-term ground-based observations of airglow emissions in the Eastern Mediterranean. We show the nocturnal mean temperature analysis, which includes time series as well as spectral analysis of the data. In addition, we obtain (migrating) tidal oscillation estimates from the high resolution (1 min) data, by using harmonic fitting, and we analyze the variability of planetary wave signatures in the residual temperature data, which are retrieved after the removal of the tidal harmonic fits from the data. In this analysis of the residual data we find a dominant quasi-5–7 day planetary wave influence on the mesopause temperatures above the Eastern Mediterranean.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Pubblicazione_2016.pdfMain article4.33 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s)

105
checked on Apr 20, 2024

Download(s)

11
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric