Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10477
AuthorsSilber, I.* 
Price, C.* 
Schmidt, C.* 
Wüst, S.* 
Bittner, M.* 
Pecora, E.* 
TitleFirst ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides
Issue Date1-Mar-2017
Series/Report no./155 (2017)
DOI10.1016/j.jastp.2016.08.014
URIhttp://hdl.handle.net/2122/10477
KeywordsAirglow
Planetary waves
Atmospheric tides
Mesopause temperatures
Subject Classification01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques 
AbstractThe mesopause region (~90 km altitude) is the coldest region of our atmosphere, and is found at the boundary between the upper mesosphere and lower thermosphere. Ground-based spectrometers, which are sensitive to the emissions from the hydroxyl (OH*) airglow layer (lying at ~87 km altitude), are used to monitor the temperature variability within the mesosphere-lower-thermosphere (MLT), at high temporal resolution. The variability of the MLT region of the atmosphere is driven by momentum deposition from gravity waves, atmospheric tides and planetary waves. The displacement of air caused by these waves can produce strong temperature, wind and species concentration perturbations. In this study we present an analysis of 4-years of OH* rotational temperature data, acquired with the German Aerospace Center (DLR) GRIPS-10 (Ground Based Infrared P-branch Spectrometer) instrument, which was installed in Israel in November 2011. This instrument provided the first long-term ground-based observations of airglow emissions in the Eastern Mediterranean. We show the nocturnal mean temperature analysis, which includes time series as well as spectral analysis of the data. In addition, we obtain (migrating) tidal oscillation estimates from the high resolution (1 min) data, by using harmonic fitting, and we analyze the variability of planetary wave signatures in the residual temperature data, which are retrieved after the removal of the tidal harmonic fits from the data. In this analysis of the residual data we find a dominant quasi-5–7 day planetary wave influence on the mesopause temperatures above the Eastern Mediterranean.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Pubblicazione_2016.pdfMain article4.33 MBAdobe PDFView/Open
Show full item record

Page view(s)

7
Last Week
0
Last month
1
checked on Aug 20, 2017

Download(s)

3
checked on Aug 20, 2017

Google ScholarTM

Check

Altmetric