Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10334
DC FieldValueLanguage
dc.contributor.authorallFinocchio, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBarba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBasili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2016-09-05T07:45:03Zen
dc.date.available2016-09-05T07:45:03Zen
dc.date.issued2016-07-30en
dc.identifier.urihttp://hdl.handle.net/2122/10334en
dc.description.abstractSlip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.en
dc.description.sponsorshipProject “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofTectonophysicsen
dc.subjectslip rateen
dc.subjectnumerical modelen
dc.subjectfaulten
dc.subjectrheologyen
dc.subjectcentral Italyen
dc.subjectactive tectonicsen
dc.titleSlip rate depth distribution for active faults in Central Italy using numerical modelsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.identifier.URLhttp://www.sciencedirect.com/science/article/pii/S0040195116303134en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.identifier.doi10.1016/j.tecto.2016.07.031en
dc.relation.referencesAkinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., Perkins, D., 2009. Effect of Time Dependence on Probabilistic Seismic-Hazard Maps and Deaggregation for the Central Apennines, Italy. Bulletin of the Seismological Society of America 99, 585-610, doi: 10.1785/0120080053. Albano, M., Barba, S., Saroli, M., Moro, M., Malvarosa, F., Costantini, M., Bignami, C., Stramondo, S., 2015. Gravity-driven postseismic deformation following the Mw 6.3 2009 L'Aquila (Italy) earthquake. Sci Rep 5, 16558, doi: 10.1038/srep16558. Allmendinger, R.W., 1998. Inverse and forward numerical modeling of trishear fault-propagation folds. Tectonics 17, 640-656, doi: 10.1029/98tc01907. Amoruso, A., Crescentini, L., D'Anastasio, E., De Martini, P.M., 2005. Clues of postseismic relaxation for the 1915 Fucino earthquake (central Italy) from modeling of leveling data. Geophysical Research Letters 32, doi: 10.1029/2005gl024139. Barba, S., Basili, R., 2000. Analysis of seismological and geological observations for moderate size earthquakes: the Colfiorito Fault System (Central Apennines, Italy). Geophysical Journal International 141, 241-252, doi. Barba, S., Carafa, M.M.C., Boschi, E., 2008. Experimental evidence for mantle drag in the Mediterranean. Geophysical Research Letters 35, doi: 10.1029/2008gl033281. Barba, S., Finocchio, D., Sikdar, E., Burrato, P., 2013. Modelling the interseismic deformation of a thrust system: seismogenic potential of the Southern Alps. Terra Nova 25, 221-227, doi: 10.1111/ter.12026. Basili, R., Barba, S., 2007. Migration and shortening rates in the northern Apennines, Italy: implications for seismic hazard. Terra Nova 19, 462-468, doi: 10.1111/j.1365-3121.2007.00772.x. Basili, R., Tiberti, M.M., Kastelic, V., Romano, F., Piatanesi, A., Selva, J., Lorito, S., 2013. Integrating geologic fault data into tsunami hazard studies. Natural Hazards and Earth System Science 13, 1025-1050, doi: 10.5194/nhess-13-1025-2013. Benedetti, L., Manighetti, I., Gaudemer, Y., Finkel, R., Malavieille, J., Pou, K., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., 2013. Earthquake synchrony and clustering on Fucino faults (Central Italy) as revealed from in situ36Cl exposure dating. Journal of Geophysical Research: Solid Earth 118, 4948-4974, doi: 10.1002/jgrb.50299. Bigi, S., Conti, A., Casero, P., Ruggiero, L., Recanati, R., Lipparini, L., 2013. Geological model of the central Periadriatic basin (Apennines, Italy). Marine and Petroleum Geology 42, 107-121, doi: 10.1016/j.marpetgeo.2012.07.005. Bird, P., 1989. New finite element techniques for modeling deformation histories of continents with stratified temperature-dependent rheologies. Journal of Geophysical Research 94, 3967-3990, doi. Bird, P., 1999. Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting. Computers & Geosciences 25, 383-394, doi. Bird, P., 2009. Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets. Journal of Geophysical Research 114, doi: 10.1029/2009jb006317. Bonini, L., Basili, R., Toscani, G., Burrato, P., Seno, S., Valensise, G., 2015. The role of pre-existing discontinuities in the development of extensional faults: An analog modeling perspective. Journal of Structural Geology 74, 145-158, doi: 10.1016/j.jsg.2015.03.004. Bonini, L., Di Bucci, D., Toscani, G., Seno, S., Valensise, G., 2014. On the complexity of surface ruptures during normal faulting earthquakes: excerpts from the 6 April 2009 L'Aquila (central Italy) earthquake (Mw 6.3). Solid Earth 5, 389-408, doi: 10.5194/se-5-389-2014. Bray, J.D., Seed, R.B., Cluff, L.S., Seed, H.B., 1994. Earthquake fault propagation through soil. Journal of Geotechnical Engineering 120, 543-561, doi: 10.1061/(ASCE)0733-9410(1994)120:3(543). Budnitz, R.J., Apostolakis, G., Boore, D.M., Cluff, L.S., Coppersmith, K.J., Cornell, C.A., Morris, P.A., 1997. Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and the use of experts. US Nuclear Regulatory Commission, NUREG/CR-6372, Washington, D.C. Carafa, M.M.C., Barba, S., 2011. Determining rheology from deformation data: The case of central Italy. Tectonics 30, n/a-n/a, doi: 10.1029/2010tc002680. Carafa, M.M.C., Barba, S., 2013. The stress field in Europe: optimal orientations with confidence limits. Geophysical Journal International 193, 531-548, doi: 10.1093/gji/ggt024. Carafa, M.M.C., Barba, S., Bird, P., 2015. Neotectonics and long-term seismicity in Europe and the Mediterranean region. Journal of Geophysical Research: Solid Earth 120, 5311-5342, doi: 10.1002/2014jb011751. Carafa, M.M.C., Bird, P., 2016. Improving deformation models by discounting transient signals in geodetic data, II: Geodetic data, stress directions, and long-term strain rates in Italy. Journal of Geophysical Research: Solid Earth, n/a-n/a, doi: 10.1002/2016JB013038. Chamlagain, D., Hayashi, D., 2005. Fault development in the Thakkhola half graben: insights from numerical simulation. Bulletin of the Faculty of Science, University of the Ryukyus, Japan. 79, 57-90, doi. Chiarabba, C., Amato, A., Anselmi, M., Baccheschi, P., Bianchi, I., Cattaneo, M., Cecere, G., Chiaraluce, L., Ciaccio, M.G., De Gori, P., De Luca, G., Di Bona, M., Di Stefano, R., Faenza, L., Govoni, A., Improta, L., Lucente, F.P., Marchetti, A., Margheriti, L., Mele, F., Michelini, A., Monachesi, G., Moretti, M., Pastori, M., Piana Agostinetti, N., Piccinini, D., Roselli, P., Seccia, D., Valoroso, L., 2009. The 2009 L'Aquila (central Italy) MW6.3 earthquake: Main shock and aftershocks. Geophysical Research Letters 36, doi: 10.1029/2009gl039627. Chiarabba, C., Bagh, S., Bianchi, I., De Gori, P., Barchi, M., 2010. Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines, Italy) revealed by microseismicity, seismic tomography, and teleseismic receiver functions. Earth and Planetary Science Letters 295, 462-476, doi: 10.1016/j.epsl.2010.04.028. Chiaraluce, L., 2003. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study. Journal of Geophysical Research 108, doi: 10.1029/2002jb002166. Cowie, P.A., Roberts, G.P., Bull, J.M., Visini, F., 2012. Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings. Geophysical Journal International 189, 143-160, doi: 10.1111/j.1365-246X.2012.05378.x. Cowie, P.A., Vanneste, C., Sornette, D., 1993. Statistical physics model for the spatiotemporal evolution of faults. Journal of Geophysical Research 98, 21809, doi: 10.1029/93jb02223. Devoti, R., Esposito, A., Pietrantonio, G., Pisani, A.R., Riguzzi, F., 2011. Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth and Planetary Science Letters 311, 230-241, doi: 10.1016/j.epsl.2011.09.034. Di Luzio, E., Mele, G., Tiberti, M.M., Cavinato, G.P., Parotto, M., 2009. Moho deepening and shallow upper crustal delamination beneath the central Apennines. Earth and Planetary Science Letters 280, 1-12, doi: 10.1016/j.epsl.2008.09.018. Di Stefano, R., Kissling, E., Chiarabba, C., Amato, A., Giardini, D., 2009. Shallow subduction beneath Italy: Three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-qualityPwave arrival times. Journal of Geophysical Research 114, doi: 10.1029/2008jb005641. DISS, W.G., 2015. Database of Individual Seismogenic Sources (DISS), Version 3.2.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia, http://diss.rm.ingv.it/diss/, doi: 10.6092/INGV.IT-DISS3.2.0. Doglioni, C., Carminati, E., Cuffaro, M., Scrocca, D., 2007. Subduction kinematics and dynamic constraints. Earth-Science Reviews 83, 125-175, doi: 10.1016/j.earscirev.2007.04.001. Doglioni, C., Gueguen, E., Harabaglia, P., Mongelli, F., 1999. On the origin of W-directed subduction zones and applications to the western Mediterranean. Geological Society, London Special Publication 156, 541-561, doi. Doglioni, C., Moretti, I., Roure, F., 1991. Basal lithospheric detachment, eastward mantle flow and Mediterranean Geodynamics: a discussion. Journal of Geodynamics 13, 47-65, doi. Ellis, S., Stöckhert, B., 2004. Imposed strain localization in the lower crust on seismic timescales. Earth Planets Space 56, 1103-1109, doi. Elter, P., Giglia, G., Tongiorgi, M., Trevisan, L., 1975. Tensional and compressional areas in the recent (Tortonian to Present) evolution of the northern Apennines. Bollettino di Geofisica Teorica ed Applicata 65, 3-18, doi. Fantoni, R., Franciosi, R., 2010. Tectono-sedimentary setting of the Po Plain and Adriatic foreland. Rendiconti Lincei 21, 197-209, doi: 10.1007/s12210-010-0102-4. Finocchio, D., Barba, S., Santini, S., Megna, A., 2013. Interpreting the interseismic deformation of the Altotiberina Fault (central Italy) through 2D modelling. Annals of Geophysics 56, S0673, doi: 10.4401/ag-5806. Frepoli, A., Amato, A., 1997. Contemporaneous extension and compression in the northern Apennines from earthquake fault-plane solutions. Geophys. J. Int. 129, 368-388, doi. Galadini, F., Galli, P., 2000. Active Tectonics in the Central Apennines (Italy) - Input Data for Seismic Hazard Assessment. Natural Hazards 22, 225-270, doi. Geist, E.L., Andrews, D.J., 2000. Slip rates on San Francisco Bay area faults from anelastic deformation of the continental lithosphere. Journal of Geophysical Research 105, 25543, doi: 10.1029/2000jb900254. Ghisetti, F., Vezzani, L., 2002. Normal faulting, extension and uplift in the outer thrust belt of the central Apennines (Italy): role of the Caramanico fault. Basin Research 14, 225-236, doi. Gold, R.D., Cowgill, E., Wang, X.-F., Chen, X.-H., 2006. Application of trishear fault-propagation folding to active reverse faults: examples from the Dalong Fault, Gansu Province, NW China. Journal of Structural Geology 28, 200-219, doi: 10.1016/j.jsg.2005.10.006. Hardy, S., Ford, M., 1997. Numerical modeling of trishear fault propagation folding. Tectonics 16, 841-854, doi: 10.1029/97tc01171. Herak, D., Herak, M., Prelogović, E., Markušić, S., Markulin, Ž., 2005. Jabuka island (Central Adriatic Sea) earthquakes of 2003. Tectonophysics 398, 167-180, doi: 10.1016/j.tecto.2005.01.007. Hetland, E.A., Hager, B.H., 2006. Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences. Geochemistry, Geophysics, Geosystems 7, n/a-n/a, doi: 10.1029/2005gc001087. Hsu, Y.-J., Simons, M., Yu, S.-B., Kuo, L.-C., Chen, H.-Y., 2003. A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt. Earth and Planetary Science Letters 211, 287-294, doi: 10.1016/s0012-821x(03)00203-6. Kastelic, V., Carafa, M.M.C., 2012. Fault slip rates for the active External Dinarides thrust-and-fold belt. Tectonics 31, n/a-n/a, doi: 10.1029/2011tc003022. Maesano, F.E., D'Ambrogi, C., 2015. Coupling sedimentation and tectonic control: Pleistocene evolution of the central Po Basin. Italian Journal of Geosciences 135, 1-45, doi: 10.3301/ijg.2015.17. Maesano, F.E., D'Ambrogi, C., Burrato, P., Toscani, G., 2015. Slip-rates of blind thrusts in slow deforming areas: Examples from the Po Plain (Italy). Tectonophysics 643, 8-25, doi: 10.1016/j.tecto.2014.12.007. Maesano, F.E., Toscani, G., Burrato, P., Mirabella, F., D'Ambrogi, C., Basili, R., 2013. Deriving thrust fault slip rates from geological modeling: Examples from the Marche coastal and offshore contraction belt, Northern Apennines, Italy. Marine and Petroleum Geology 42, 122-134, doi: 10.1016/j.marpetgeo.2012.10.008. Megna, A., Barba, S., Santini, S., 2005. Normal-fault stress and displacement through finite-element analysis. Annals of Geophysics 48, 1009-1016, doi. Melosh, H.J., Raefsky, A., 1981. A simple and efficient method for introducing faults into finite element computations. Bulletin of the Seismological Society of America 71, 1391-1400, doi. Michetti, A.M., Brunamonte, F., Serva, L., Vittori, E., 1996. Trench investigations of the 1915 Fucino earthquake fault scarp (Abruzzo, central Italy): geological evidence of large historical events. Journal of Geophysical Research 101, 5921-5936, doi: 10.1029/95JB02852. Nadeau, R.M., 1999. Fault Slip Rates at Depth from Recurrence Intervals of Repeating Microearthquakes. Science 285, 718-721, doi: 10.1126/science.285.5428.718. Negredo, A.M., Carminati, E., Barba, S., Sabadini, R., 1999. Dynamic modelling of stress accumulation in central Italy. Geophysical Research Letters 26, 1945-1948, doi: 10.1029/1999gl900408. Pace, B., 2006. Layered Seismogenic Source Model and Probabilistic Seismic-Hazard Analyses in Central Italy. Bulletin of the Seismological Society of America 96, 107-132, doi: 10.1785/0120040231. Pantosti, D., D'Addezio, G., Cinti, F.R., 1996. Paleoseismicity of the Ovindoli-Pezza fault,central Apennines, Italy: a history including a large, previously unrecorded earthquake in Middle Ages (886-1300 A.D.). Journal of Geophysical Research 101, 5937-5959, doi. Papanikolaou, I.D., Roberts, G.P., Michetti, A.M., 2005. Fault scarps and deformation rates in Lazio–Abruzzo, Central Italy: Comparison between geological fault slip-rate and GPS data. Tectonophysics 408, 147-176, doi: 10.1016/j.tecto.2005.05.043. Patacca, E., Scandone, P., Di Luzio, E., Cavinato, G.P., Parotto, M., 2008. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 27, n/a-n/a, doi: 10.1029/2005tc001917. Pizzi, A., Calamita, F., Coltorti, M., Pieruccini, P., 2002. Quaternary normal faults, intramontane basins and seismicity in the Umbria-Marche-Abruzzi Apennine Ridge (Italy):contribution of neotectonic analysis to seismic hazard assessment. Boll. Soc. Geol. It. Volume speciale n. 1, 923-929, doi. Pollitz, F.F., Nyst, M., Nishimura, T., Thatcher, W., 2006. Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake. Journal of Geophysical Research 111, doi: 10.1029/2005jb003901. Pondrelli, S., Morelli, A., 2008. Seismic strain and stress field studies in Italy before and after the Umbria-Marche seismic sequence: a review. Annals of Geophysics 51, 319-330, doi. Pondrelli, S., Salimbeni, S., Morelli, A., Ekström, G., Postpischl, L., Vannucci, G., Boschi, E., 2011. European–Mediterranean Regional Centroid Moment Tensor catalog: Solutions for 2005–2008. Physics of the Earth and Planetary Interiors 185, 74-81, doi: 10.1016/j.pepi.2011.01.007. Riguzzi, F., Tertulliani, A., Gasparini, C., 1989. Study of the Seismic Sequence of Porto San Giorgio (Marche) - 3 July 1987. Il Nuovo Cimento 12, 453-465, doi. Roberts, G.P., Cowie, P., Papanikolaou, I., Michetti, A.M., 2004. Fault scaling relationships, deformation rates and seismic hazards: an example from the Lazio–Abruzzo Apennines, central Italy. Journal of Structural Geology 26, 377-398, doi: 10.1016/s0191-8141(03)00104-4. Rosenbaum, G., Lister, G.S., 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23, n/a-n/a, doi: 10.1029/2003tc001518. Rovida, A., Camassi, R., Gasperini, P., Stucchi, M., (eds.), 2011. CPTI11, the 2011 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia Milano, Bologna, http://emidius.mi.ingv.it/CPTI, doi: 10.6092/INGV.IT-CPTI11. Speranza, F., Minelli, L., 2014. Ultra-thick Triassic dolomites control the rupture behavior of the central Apennine seismicity: Evidence from magnetic modeling of the L'Aquila fault zone. Journal of Geophysical Research: Solid Earth 119, 6756-6770, doi: 10.1002/2014jb011199. Tiberti, M.M., Orlando, L., Di Bucci, D., Bernabini, M., Parotto, M., 2005. Regional gravity anomaly map and crustal model of the Central–Southern Apennines (Italy). Journal of Geodynamics 40, 73-91, doi: 10.1016/j.jog.2005.07.014. Tizzani, P., Castaldo, R., Solaro, G., Pepe, S., Bonano, M., Casu, F., Manunta, M., Manzo, M., Pepe, A., Samsonov, S., Lanari, R., Sansosti, E., 2013. New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements. Geophysical Research Letters 40, 1971-1977, doi: 10.1002/grl.50290. Tozer, R.S.J., Butler, R.W.H., Corrado, S., 2002. Comparing thin- and thick-skinned thrust tectonic models of the Central Apennines, Italy. EGU Stephan Mueller Special Publication Series 1, 181–194, doi. Trubienko, O., Fleitout, L., Garaud, J.-D., Vigny, C., 2013. Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes. Tectonophysics 589, 126-141, doi: 10.1016/j.tecto.2012.12.027. Vannoli, P., Basili, R., Valensise, G., 2004. New geomorphologic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). Journal of Seismology 8, 297-312, doi. Vannoli, P., Vannucci, G., Bernardi, F., Palombo, B., Ferrari, G., 2015. The Source of the 30 October 1930 Mw 5.8 Senigallia (Central Italy) Earthquake: A Convergent Solution from Instrumental, Macroseismic, and Geological Data. Bulletin of the Seismological Society of America 105, 1548-1561, doi: 10.1785/0120140263. Vergne, J., Cattin, V., Avouac, J.P., 2001. On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophys. J. Int. 147, 155-162, doi. Visini, F., de Nardis, R., Lavecchia, G., 2010. Rates of active compressional deformation in central Italy and Sicily: evaluation of the seismic budget. International Journal of Earth Sciences 99, 243-264, doi: 10.1007/s00531-009-0473-x. Wang, R., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers & Geosciences 32, 527-541, doi: 10.1016/j.cageo.2005.08.006. Ward, S.N., Valensise, G., 1996. Progressive growth of San Clemente Island, California, by blind thrust faulting: implications for fault slip partitioning in the California Continental Borderland. Geophys. J. Int. 126, 712-734, doi.en
dc.description.obiettivoSpecifico1T. Geodinamica e interno della Terraen
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0040-1951en
dc.relation.eissn1879-3266en
dc.contributor.authorFinocchio, D.en
dc.contributor.authorBarba, S.en
dc.contributor.authorBasili, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-7965-6667-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2016_Finocchio_etal_Tectonophysics_InPress.pdfMain article3.99 MBAdobe PDF
Finocchio_etal_2016_preprint.pdfOpen Access4.25 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

6
checked on Feb 10, 2021

Page view(s) 50

356
checked on Apr 20, 2024

Download(s)

62
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric