Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1031
DC FieldValueLanguage
dc.contributor.authorallPietrantonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallRiguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2006-03-01T11:09:48Zen
dc.date.available2006-03-01T11:09:48Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/1031en
dc.description.abstractThe aim of this paper is to describe the theoretical fundamentals, the main features and some geophysical applications of a software (STRAINGPS) suitably implemented to estimate the strain tensor from repeated GPS surveys of deformation control networks. Current softwares developed for geophysical applications generally estimate or compute bi-dimensional strain, since this is the most requested use. On the contrary, this software allows for a three-dimensional (3D) estimate of the strain tensor and does not need a subdivision of the network in triangles. It accounts for all the significant coordinate differences (or velocities) coming from repeated surveys and estimates the strain tensor components by the least squares method, starting from the hypothesis of one homogeneous strain field. Moreover, some tests to control both model adequacy and detecting outliers are performed, allowing a subdivision of the field into sub-domains with homogeneous strain field. We applied this software to three real geophysical situations. The first concerns the geodynamic (long term) induced deformation at regional scale, by estimating extensional strain rate ((0.22 ± 0.06) × 10−7) per year in central-southern Italy across the Apennines chain; the second is co-seismic strain by the assessment of the strike slip style of the Molise (central-southern Italy) earthquakes (31 October and 1 November 2002); the last regards the subsidence induced strain in the Travale-Radicondoli (central Italy) exploitation area. © 2004 Elsevier Ltd. All rights reserved.en
dc.format.extent348274 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Geodynamicsen
dc.relation.ispartofseries38 (2004)en
dc.subjectGPS observationsen
dc.titleThree-dimensional strain tensor estimation by GPS observations: methodological aspects and geophysical applicationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-18en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methodsen
dc.identifier.doidoi:10.1016/j.jog.2004.02.021en
dc.relation.referencesAbramowitz, M., Stegun, I. Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series, vol. 55, US Government Printing Office, Washington, 1965. Anzidei, M., Baldi, P., Casula, G., Galvani, A., Mantovani, E., Pesci, A., Riguzzi, F., Serpelloni, E., 2001. Insights into present-day crustal motion in the central Mediterranean area from GPS surveys. Geophys. J. Int. 146 (1), 98–110. Anzidei, M., Bonci, L., Calcaterra, S., Casula, G., D’Agostino, N., Esposito, A., Giuliani, R., Loddo, F., Mattone, M., Pietrantonio, G., Pondrelli, S., Riguzzi, F., Selvaggi, G., 2003. Terremoto del Molise del 31 ottobre-1 Novembre 2002: campo di deformazione cosismica con dati geodetici satellitari (GPS), 2003. Technical report presented at the Civil Protection Department of the Presidency of Ministry Council, Italy. Beinat, A., Marchesini, C., Rossi, A., Dini, I., 1995. Recent crustal movements of the Travale geothermal area measured by classical geodetic control network. J. Geodyn. 20 (1), 77–84. Bibby, H.M., 1975. Crustal strain from triangulation in Marlborough, New Zealand. Tectonophysics 29, 529–540. Borre, K., 1979. Elasticity and stress-strain relations in geodetic networks. Boll. Geod. Sci. Aff. 38 (3), 417–456. Bos, A.G., Spakman, W., Nyst, M.C.J., 2003. Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field. J. Geophys. Res. 108 (B10), 2458. Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., 2003. Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics 363, 271–280. Brunner, F.K., 1979. On the analysis of geodetic networks for the determination of the incremental strain tensor. Survey Rev. XXV, 192. Brunner, F.K., Coleman, R., Hirsch, B., 1981. A comparison of computation methods for crustal strains geodetic measurements. Tectonophysics 218, 281–298. Capra, A., Gandolfi, S., Mancini, F., Rossi, A., Vittuari, L., 2001. Il controllo delle deformazioni nell’area geotermica di Travale, Atti della V Conferenza Nazionale dell’ASITA, Rimini 9–12 ottobre 2001. Cohen, S.C., Cook, G.R., 1979. Determining crustal strain rates with spaceborne geodynamics ranging system data. Manuscr.Geod. 4, 245–260. Crespi, M., 1996. A software package for the adjustment and the analysis of GPS control networks. In: Unguendoli, M. (Ed.),Reports on Surveying and Geodesy. University of Bologna, edizioni Nautilus, pp. 237–264. Crespi, M., Riguzzi, F., 1998. Software available for analyzing GPS deformation, EOS, Transaction, American Geophysical Union, 79, 22, 259 and EOS electronic Supplement, http://www.agu.org/eos elec/98059e.html. Crespi, M., Pietrantonio, G., Riguzzi, F., 2000. Strain tensor estimation by GPS observations: software and applications. Boll. Geod. Sci. Aff. 3, 261–280. Dermanis, A., Livieratos, E., 1983. Applications of deformation analysis in Geodesy and geodynamics. Rev. Geophys. Space Phys. 21 (1), 41–50. Di Filippo, M., Geri, G., Marson, I., Palmieri, F., Perusini, P., Rossi, A., Toro, B., 1985. Exploitation, subsidence and gravity changes in the Travale-Radicondoli Geothermal field. In: Proceedings of the International Symposium on Geothermal Energy,vol. 9-I, August 1985. Kailua Kona, Hawaii, Geothermal Resources Council Transaction, pp. 273–278. Dong, D., Herring, T.A., King, R.W., 1998. Estimating regional deformation from a combination of space and terrestrial geodetic data. J. Geodesy. 72, 200–214. Feigl, K.L., King, R.W., Jordan, T.H., 1990. Geodetic measurement of tectonic deformation in the Santa Maria fold and thrust belt, California. J. Geophys. Res. 95, 2679–2699. Frank, F.C., 1966. Deductions of earth strains from survey data. Bull. Seismol. Soc. Am. 56 (1), 35–42. Jimenez-Munt, I., Sabadini, R., Gardi, A., Bianco, G., 2003. Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. J. Geophys. Res. 108 (B1), 2006. Kahle, H.-G., Cocard, M., Peter, Y., Geiger, A., Reilinger, R., Barka, A., Veis, G., 2000. GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian plates. J. Geophys. Res. 105 (B10), 23353–23370. Koch, K.R., 1987. Parameter Estimation and Hypothesis Testing in Linear Models. Springer Verlag. Kostrov, V.V., 1974. Seismic moment and energy of earthquakes, and seismic flow of rocks. Izv. Acad. Sci. USSR Phys. Solid Earth 1, 23–44. Liu, Q., Ranalli, G., 1998. A finite element algorithm for modeling the subsidence and thermal history of extensional basins. J. Geodyn. 26, 1–25. Liu, Q., 1998. Recent crustal deformation across the Datong-Yanggao (DTYG) area inferred the terrestrial and GPS measurements, Boll. Geod. Sci. Aff., 4. Livieratos, E., 1980. Crustal deformations from geodetic measurements. Boll. Geofis. Teor. Appl. XXII (88), 255–260. Milano, G., Ventura, G., Di Giovambattista, R., 2002. Seismic evidence of longitudinal extension in the Southern Apennines chain (Italy): The 1997–1998 Sannio-Matese seismic sequence, Geophys. Res. Lett. 29 (20). Pope, A.J., 1976. The statistics of residuals and the detection of outliers. NOOA Technical Report NOS 65 NGS 1. Pondrelli, S., Morelli, A., Ekström, G., Mazza, S., Boschi, E., Dziewonski, A. M., 2002. European-Mediterranean regional centroid-moment tensors: 1997–2000, Phys. Earth Planet. Int. 130, 71–101 (http://www.ingv.it/seismoglo/RCMT/). Wessel P., Smith, W. H. F., 1995. The Generic Mapping Tools (GMT) version 3.0. Technical Reference & Cookbook,SOEST/NOAA.en
dc.description.fulltextreserveden
dc.contributor.authorPietrantonio, G.en
dc.contributor.authorRiguzzi, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-0429-5120-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
riguzzigeodyn.pdf340.11 kBAdobe PDF
Show simple item record

Page view(s) 5

393
checked on Apr 20, 2024

Download(s) 50

69
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric