Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1022
DC FieldValueLanguage
dc.contributor.authorallRusch, A.; Department of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USAen
dc.contributor.authorallWalpersdorf, E.; Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germanyen
dc.contributor.authoralldeBeer, D.; Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germanyen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallAmend, J. P.; Department of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USAen
dc.date.accessioned2006-02-24T14:33:46Zen
dc.date.available2006-02-24T14:33:46Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/1022en
dc.description.abstractHydrothermal fluids and sediments from subaerial and shallow submarine sites at Vulcano Island, Italy were investigated for relations between the thermophilic microbial communities, as analysed by fluorescence in situ hybridization, and their geochemical environment, as assessed by photometry, chromatography, and in situ microsensor measurements. Mixing between hydrothermal fluids and seawater in the sediment pore space was reflected in the chemical composition of the emitted fluids, in depth profiles of pore water oxygen and sulfide concentrations, and in the structure of the benthic microbial community. Organic compounds did not accumulate in the vent fluids (b10 AM fatty acids) or in the sediments (b0.1% Corg), suggesting that efficient utilization supported microbial populations on the order of 104 cells per ml fluid and 108 cells per cm3 sediment. Groups of thermophiles that typically gain metabolic energy from the fermentation of organic matter (Thermococcales, Thermotoga/Thermosipho spp., and Bacillus sp.)were detected in significant abundances at all study sites. Also abundant were thermophiles capable of oxidizing organic acids with oxygen, nitrate, or sulfate. Aerobic thermophiles (Aquificales and Thermus sp.) were more abundant at oxic sites than at anoxic sites. Increasingly oxygenated habitats were associated with decreasing abundance of anaerobic (hyper)thermophiles belonging to the order Archaeoglobales.en
dc.format.extent539 bytesen
dc.format.extent315050 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical geologyen
dc.relation.ispartofseries224(2005)en
dc.subjectBiogeochemistryen
dc.subjectHydrothermal systemen
dc.subjectMarine sedimenten
dc.subjectMicrobial ecologyen
dc.subjectMicrosensoren
dc.subjectThermophilesen
dc.titleMicrobial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber169– 182en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.identifier.doi10.1016/j.chemgeo.2005.07.026en
dc.relation.referencesAmann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R.,Stahl, D.A., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925. Amend, J.P., Shock, E.L., 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243. Amend, J.P., Amend, A.C., Valenza, M., 1998. Determination of volatile fatty acids in the hot springs of Vulcano, Aeolian Islands,Italy. Org. Geochem. 28, 699–705. Amend, J.P., Rogers, K.L., Shock, E.L., Gurrieri, S., Inguaggiato, S., 2003a. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1,37–58. Amend, J.P., Meyer-Dombard, D.R., Sheth, S.N., Zolotova, N., Amend, A.C., 2003b. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch. Microbiol. 179, 394–401. Amend, J.P., Rogers, K.L., Meyer-Dombard, D.R., 2004. Microbially mediated sulfur redox: energetics in marine hydrothermal vent systems. In: Amend, J.P., Edwards, K.J., Lyons, T.W. (Eds.),Sulfur Biogeochemistry—Past and Present, Special Paper-Geological Society of America, vol. 379, pp. 17–34. Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton. Boudreau, B.P., 1996. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–3142. Bouvier, T., del Giorgio, P.A., 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol. Ecol. 44, 3–15. Brinkhoff, T., Sievert, S.M., Kuever, J., Muyzer, G., 1999. Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegaean Sea (Milos, Greece). Appl. Environ. Microbiol. 65, 3843–3849. Broecker, W.S., Peng, T.H., 1974. Gas exchange rates between air and sea. Tellus 26, 21–35. Burggraf, S., Mayer, T., Amann, R., Schadhauser, S., Woese, C.R., Stetter, K.O., 1994. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 60, 3112–3119. Caccamo, D., Gugliandolo, C., Stackebrandt, E., Maugeri, T.L., 2000. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int. J. Syst. Evol. Microbiol. 50, 2009–2012. Capasso, G., Favara, R., Francofonte, S., Inguaggiato, S., 1999. Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Islands, Italy) during 1996: evidence of resumed volcanic activity. J. Volcanol. Geotherm. Res. 88, 167– 175. Capasso, G., D’Alessandro, W., Favara, R., Inguaggiato, S., Parello, F., 2001. Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy). J. Volcanol. Geotherm. Res. 108, 189–200. Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458. Daims, H., Bru¨ hl, A., Amann, R., Schleifer, K.-H., Wagner, M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444. Dando, P.R., Stu¨ben, D., Varnavas, S.P., 1999. Hydrothermalism in the Mediterranean Sea. Prog. Oceanogr. 44, 333–367. Dando, P.R., Aliani, S., Arab, H., Bianchi, C.N., Brehmer, M., Cocito,S., et al., 2000. Hydrothermal studies in the Aegean Sea. Phys. Chem. Earth 25, 1–8. D’Andrea, A.F., Aller, R.C., Lopez, G.R., 2002. Organic matter flux and reactivity on a South Carolina sandflat: the impacts of porewater advection and macrobiological structures. Limnol. Oceanogr. 47, 1056–1070. Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., et al., 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392,353–358. Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., Sogin, M.L., 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765–2772. di Liberto, V., Nuccio, P.M., Paonita, A., 2002. Genesis of chlorine and sulphur in fumarolic emissions at Vulcano Island (Italy): assessment of pH and redox conditions in the hydrothermal system. J. Volcanol. Geotherm. Res. 116, 137–150. Dirmeier, R., Keller, M., Hafenbradl, D., Braun, F.-J., Rachel, R., Burggraf, S., Stetter, K.O., 1998. Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2, 109–114. Fiala, G., Stetter, K.O., 1986. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 8C. Arch. Microbiol. 145, 56–61. Fiala, G., Stetter, K.O., Jannasch, H.W., Langworthy, T.A., Madon, J., 1986. Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 8C. Syst. Appl. Microbiol. 8, 106–113. Fischer, F., Zillig, W., Stetter, K.O., Schreiber, G., 1983. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301, 511–513. Fishbain, S., Dillon, J.G., Gough, H.L., Stahl, D.A., 2003. Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl. Environ. Microbiol. 69, 3663–3667. Fulignati, P., Gioncada, A., Sbrana, A., 1998. Geologic model of the magmatic–hydrothermal system of Vulcano (Aeolian Islands, Italy). Mineral. Petrol. 62, 195–222. Gamberi, F., Marani, M., Savelli, C., 1997. Tectonic, volcanic and hydrothermal features of a submarine portion of the Aeolian Arc (Tyrrhenian Sea). Mar. Geol. 140, 167–181. Gieskes, J.M., 1969. Effect of temperature on the pH of seawater. Limnol. Oceanogr. 14, 679–685. Grasshoff, K., 1983. Determination of oxygen. In: Grasshoff, K., Ehrhardt, M., Kremling, K. (Eds.), Methods of Seawater Analysis. Verlag Chemie, Weinheim, pp. 61–72. Gugliandolo, C., Italiano, F., Maugeri, T.L., Inguaggiato, S., Caccamo, D., Amend, J.P., 1999. Submarine hydrothermal vents of the Aeolian Islands: relationship between microbial communities and thermal fluids. Geomicrobiol. J. 16, 105–117. Gundersen, J.K., Jørgensen, B.B., 1990. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345, 604–607. Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H., Stetter, K.O., 1996. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308–314. Harmsen, H.J.M., Prieur, D., Jeanthon, C., 1997a. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl. Environ. Microbiol. 63, 4061–4068. Harmsen, H.J.M., Prieur, D., Jeanthon, C., 1997b. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63, 2876–2883. Hoaki, T., Nishijima, M., Miyashita, H., Maruyama, T., 1995. Dense community of hyperthermophilic sulfur-dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara-Jima Island, Kagoshima, Japan. Appl. Environ. Microbiol. 61, 1931–1937. Huber, R., Langworthy, T.A., Ko¨ nig, H., Thomm, M., Woese, C.R.,Sleytr, U.B., et al., 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 8C. Arch. Microbiol. 150, 324–333. Huettel, M., Webster, I.T., 2001. Porewater flow in permeable sediments. In: Boudreau, B.P., Jørgensen, B.B. (Eds.), The Benthic Boundary Layer. Oxford University Press, pp. 144–179. Italiano, F., Nuccio, P.M., 1991. Geochemical investigations of submarine volcanic exhalations to the east of Panarea, Aeolian Islands, Italy. J. Volcanol. Geotherm. Res. 46, 125–141. Jeroschewski, P., Steukart, C., Ku¨ hl, M., 1996. An amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 4351–4357. Keller, M., Braun, F.-J., Dirmeier, R., Hafenbradl, D., Burggraf, S.,Rachel, R., et al., 1995. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch. Microbiol. 164, 390–395. Ku¨hl, M., Steukart, C., Eickert, G., Jeroschewski, P., 1998. An H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment. Aquat. Microb. Ecol. 15, 201–209. Li, Y.H., Gregory, S., 1974. Diffusion of ions in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714. Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., et al., 2002. Oligonucleotide microarray for 16S rRNA genebased detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68, 5064–5081. Manaia, C.M., Hoste, B., Gutierrez, M.C., Gillis, M., Ventosa, A., Kersters, K., et al., 1994. Halotolerant Thermus strains from marine and terrestrial hot springs belong to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend. Syst. Appl. Microbiol. 17, 526–532. Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K.-H., 1992. Phylogenetic oligodeoxynucleotide probes for major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600. Meyer-Dombard, D.R., Shock, E.L., Amend, J.P., in preparation. Geochemical templates in growth media design: trace element effects on culturing thermophiles. Environ. Microbiol. Millero, F.J., Plese, T., Fernandez, M., 1988. The dissociation of hydrogen sulfide in seawater. Limnol. Oceanogr. 33, 269–274. Montalto, A., 1996. Signs of potential renewal of eruptive activity at La Fossa (Vulcano, Aeolian Islands). Bull. Volcanol. 57, 483–492. Nogales, B., Moore, E.R.B., Llobet-Brossa, E., Rossello´-Mora, R., Amann, R., Timmis, K.N., 2001. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67,1874–1884. O’Hara, S.C.M., Dando, P.R., Schuster, U., Bennis, A., Boyle, J.D., Chiu, F.T.W., et al., 1995. Gas seep induced interstitial water circulation: observations and environmental implications. Cont. Shelf Res. 15, 931–948. Raskin, L., Stromley, J.M., Rittmann, B.E., Stahl, D.A., 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60,1232–1240. Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B.B., Amann, R., 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol. 66, 3592–3602. Ravenschlag, K., Sahm, K., Amann, R., 2001. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol. 67, 387–395. Revsbech, N.P., 1989. An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 34, 474–478. Revsbech, N.P., Jørgensen, B.B., 1986. Microelectrodes and their use in microbial ecology. In: Marshall, K.C. (Ed.), Advances in Microbial Ecology, vol. 9. Plenum Press, New York, pp. 293–352. Rusch, A., Amend, J.P., 2004. Order-specific 16S rRNA targeted oligonucleotide probes for (hyper)thermophilic Archaea and Bacteria. Extremophiles 8, 357–366. Rusch, A., Forster, S., Huettel, M., 2001. Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water–sediment interface. Biogeochemistry 55, 1–27. Rusch, A., Huettel, M., Reimers, C.E., Taghon, G.L., Fuller, C.M., 2003. Bacterial populations of a subtidal sandy shelf sediment—distribution, community composition and activity affected by hydrodynamics and organic matter supply. FEMS Microbiol. Ecol. 44, 89–100. Sachs, L., 1997. Angewandte Statistik. Springer-Verlag, Berlin. Schallenberg, M., Kalff, J., Rasmussen, J.B., 1989. Solutions to problems in enumerating sediment bacteria by direct counts. Appl. Environ. Microbiol. 55, 1214–1219. Schrenk, M.O., Kelley, D.S., Delaney, J.R., Baross, J.A., 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592. Sedwick, P., Stu¨ben, D., 1996. Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy. Mar. Chem. 53, 147–161. Segerer, A., Langworthy, T.A., Stetter, K.O., 1988. Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst. Appl. Microbiol. 10, 161–171. Sievert, S.M., Brinkhoff, T., Muyzer, G., Ziebis, W., Kuever, J., 1999. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine vent near Milos Island (Greece). Appl. Environ. Microbiol. 65, 3834–3842. Sievert, S.M., Kuever, J., Muyzer, G., 2000. Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol. 66, 3102–3109. Sievert, S.M., Ziebis, W., Kuever, J., Sahm, K., 2000. Relative abundance of Archaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot–blot hydridization. Microbiology 146, 1287–1293. Skoog, A., Vlahos, P., Rogers, K.L., Amend, J.P., in preparation. Concentration and distribution of dissolved neutral aldoses in a shallow hydrothermal vent system of Vulcano, Italy. Org. Geochem. Snaidr, J., Amann, R., Huber, I., Ludwig, W., Schleifer, K.-H., 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63, 2884–2896. Stetter, K.O., 1988. Archaeoglobus fulgidus gen. nov., sp. nov., a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172–173. Stetter, K.O., Ko¨nig, H., Stackebrandt, E., 1983. Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 8C. Syst. Appl. Microbiol. 4, 535–551. Stetter, K.O., Lauerer, G., Thomm, M., Neuner, A., 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel brach of archaebacteria. Science 236, 822–824. Svensson, E., Skoog, A., Amend, J.P., 2004. Concentration and distribution of dissolved amino acids in a shallow hydrothermal system, Vulcano Island (Italy). Org. Geochem. 35, 1001–1014. Thiermann, F., Akoumianaki, I., Hughes, J.A., Giere, O., 1997. Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Greece). Mar. Biol. 128, 149–159. Tor, J.M., Amend, J.P., Lovley, D.R., 2003. Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments. Environ. Microbiol. 5, 583–591. Wenzho¨ fer, F., Holby, O., Glud, R.N., Nielsen, H.K., Gundersen, J.K.,2000. In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece. Mar. Chem. 69, 43–54. Zillig, W., Holz, I., Janekovic, D., Scha¨fer, W., Reiter, W.D., 1983. The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4, 88–94. Zillig, W., Holz, I., Klenk, H.-P., Trent, J., Wunderl, S., Janekovic, D., et al., 1987. Pyrococcus woesei sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst. Appl. Microbiol. 9, 62–70.en
dc.description.fulltextpartially_openen
dc.contributor.authorRusch, A.en
dc.contributor.authorWalpersdorf, E.en
dc.contributor.authordeBeer, D.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorAmend, J. P.en
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USAen
dc.contributor.departmentMax Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germanyen
dc.contributor.departmentMax Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA-
crisitem.author.deptMax Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany-
crisitem.author.deptMax Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Rusch et al., Chem. Geol. 2005.pdfMain article307.67 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

37
checked on Feb 10, 2021

Page view(s) 20

290
checked on Apr 20, 2024

Download(s)

104
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric