Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10108
DC FieldValueLanguage
dc.contributor.authorallSpagnuolo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFaenza, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCultrera, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHerrero, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMichelini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2015-08-06T06:55:38Zen
dc.date.available2015-08-06T06:55:38Zen
dc.date.issued2013-09en
dc.identifier.urihttp://hdl.handle.net/2122/10108en
dc.description.abstractReal-time seismology has made significant improvements in recent years, with source parameters now available within a few tens of minutes after an earthquake. It is likely that this time will be further reduced, in the near future, by means of increased efficiency in real-time transmission,increasingdatacoverageandimprovementofthemethodologies.Inthiscontext, together with the development of new ground motion predictive equations (GMPEs) that are abletoaccountforsourcecomplexity,thegenerationofstronggroundmotionshakingmapsin quasi-real time has become ever more feasible after the occurrence of a damaging earthquake. However, GMPEs may not reproduce reliably the ground motion in the near-source region where the finite fault parameters have a strong influence on the shaking. Inthispaperwetestwhetheraccountingforsource-relatedeffectsiseffectiveinbettercharacterizingthegroundmotion.WeintroduceamodificationoftheGMPEswithintheShakeMap softwarepackage,andsubsequentlytesttheaccuracyofthenewlygeneratedshakemapsinpredictingthegroundmotion.ThetestisconductedbycontrollingtheperformanceofShakeMap as we decrease the amount of the available information. We then update ShakeMap with the GMPE modified with a corrective factor accounting for source effects, in order to better constrain these effects that likely influence the level of (near-source) ground shaking. Weinvestigatetwowell-recordedearthquakesfromJapan(the2000Tottori, Mw 6.6,andthe 2008 Iwate-Miyagi, Mw7.0, events) where the instrumental coverage is as dense as needed to ensure an objective appraisal of the results. The results demonstrate that the corrected GMPE can capture only some aspects of the ground shaking in the near-source area, neglecting other multidimensional effects, such as propagation effects and local site amplification.en
dc.description.sponsorshipItalian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile(DPC)under the contract 2007–2009 DPC-INGVS3projecten
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries3/194 (2013)en
dc.subjectEarthquake ground motionsen
dc.subjectEarthquake source observationen
dc.subjectComputational seismologyen
dc.titleAccounting for source effects in the ShakeMap procedure: the 2000 Tottori and the 2008 Miyagi earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1836-1848en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1093/gji/ggt195en
dc.relation.referencesAbrahamson,N.,2000.Effectsofrupturedirectivityonprobabilisticseismic hazard analysis, in Proceedings of the Sixth International Conference on Seismic Zonation: Managing Managing Earthquake Risk in the 21st Century, Palm Springs, CA, November 12–15, 2000. Abrahamson, N. & Silva, W., 2008. Summary of the Abrahamson & Silva NGA ground-motion relations, Earthq. Spectra, 24(1), 67–97. Akkar, S. & Bommer, J.J., 2007. Empirical prediction equations for peak groundvelocityderivedfromstrong-motionrecordsfromEuropeandthe Middle East, Bull. seism. Soc. Am., 97(2), 511–530. Allen, T. & Wald, D.J., 2007. Topographic slope as a proxy for seismic siteconditions (Vs 30) and amplification around the globe, Technical Rep, U.S. Geological Survey Open-File Report 2007-1357, 69. Anderson, J.G. & Uchiyama, Y., 2011. A methodology to improve groundmotion prediction equations by including path correction, Bull. seism. Soc. Am., 101(4), 1822–1846. Anderson, J.G., Brune, J.N., Anooshehpoor, R. & Ni, S., 2000. New ground motion data and concepts in seismic hazard analysis, Curr. Sci., 79(9), 1278–1290. Aoi, S., Kunugi, T. & Fujiwara, H., 2008. Trampoline effect in extreme ground motion, Science, 322, 727–730. Atkinson, G.M. & Boore, D.M., 2011. Modifications toexisting groundmotion prediction equations in light of new data, Bull. seism. Soc. Am., 101(3), 1121–1135. Baker, J.W., 2007. Quantitative classification of near-fault ground motions using wavelet analysis, Bull. seism. Soc. Am., 97(5), 1486–1501. Bartlakowski, J., Wenzel, F., Radulian,M., Ritter, J.R.R. & Wirth,W., 2006. Urban shakemap methodology for Bucharest, Geophs. Res. Lett., 33, L14310, doi:10.1029/2006GL026283. Ben-Menahem, A., 1961. Radiation of seismic surface-waves from finite moving sources, PhD thesis, California Institute of Technology. Benioff,H.,1955.EarthquakesinKernCountyCaliforniaduring1952,Dep. Nat. Resour.—Div. Mines, 171, 199–204. Bernard, P. & Madariaga, R., 1984. A new asymptotic method for the modeling of near-field accelerograms, Bull. seism. Soc. Am., 74(2), 539–557. Boore, D.M. & Atkinson, G.A., 2008. Ground motion prediction equations for the average horizontal component of PGA, PGV, PGD, and 5percent damped PSA art spectral periods between 0.01 s and 10.0 s, Earthq. Spectra, 24(1), 99–138. Boore, D.M., Joyner, W. & Fumal, T.E., 1997. Equations for estimating horizontal response spectra and peak acceleration from Wester North Americanearthquake:asummaryofrecentwork,Seism.Res.Lett.,68(1), 128–153. Bordchert, R.D., 1994. Estimates of site-dependent response spectra for design (methodology and justification), Earthq. Spectra, 10, 617–653. Brackman,T.B.&Withers,M.,2006.ImplementingShakeMapfortheNew Madrid seismic zone, Seism. Res. Lett., 77, 445–452. Bray, J.D. & Rodriguez-Marek, A., 2004. Characterization of forwarddirectivity ground motions in the near fault region, Soil Dyn. Earthq. Eng. Geol., 24, 815–828. Campbell, K.W., 2012. Update of the Campbell-Bozorgnia NGA ground motionpredictionequation,Seism.Res.Lett.,83(2),354.Abstractsofthe 2012 SSA Annual Meeting. Campbell, K.W. & Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5percent damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthq. Spectra, 24(1), 139–171. Chiou, B.S.-J. & Youngs, R.R., 2008. An NGA model of the average horizontal component of peak ground motion and response spectra, Earthq. Spectra, 24(1), 173–215. Chiou, B.S.-J., Youngs, R.R, Abrahamson, N. & Addo, K., 2010. Groundmotion attenuation model for small-to-moderate shallow crustal earthquakes in California and its implications on regionalization of groundmotion prediction models, Earthq. Spectra, 26(4), 907–926. Covertito, V., Caccavale, M., De Matteis, R., Emolo, A., Wald, D. & Zollo, A., 2012. Fault extent estimation for near-real time ground shaking map computation purposes, Bull. Seism. Soc. Am., 102, 661–679. Cultrera,G.,Ameri,G.,Sara`o,A.,Cirella,A.&Emolo,A.,2013a.Groundmotion simulations within ShakeMap methodology: application to the 2008 Iwate–Miyagi Nairiku (Japan) and 1980 Irpinia (Italy) earthquakes, Geophys. J. Int., Advance Access published January 16, 2013, doi: 10.1093/gji/ggs074. Cultrera, G., Faenza, L., Meletti, C., D’Amico, V., Michelini, A. & Amato, A.,2013b.Shakemapsofthe2012Emilia(Italy)earthquakesandseismic code:criticalitiesinthepostseismicactions,Bull.Earthq.Eng.,submitted. Douglas, J., 2007. Inferred ground motions on Guadeloupe during the 2004 Les Saintes earthquake, Bull. Earthq. Eng., 5, 363–376. Douglas, J. & Aochi, H., 2008. A survey of techniques for predicting earthquake ground motions for engineering purposes, Surv. Geophys., 29, 187–220. Joyner, W.B. & Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion, in Earthquake Engineering and Soil Dynamics II, GT Div/ASCE, Park City, UT, pp. 43–102. Kaka, S.I. & Atkinson, G.M., 2006. Implementation of ShakeMap in Ontario: challenges of detection and location in a sparse network, Seism. Res. Lett., 6, 780–792. Kanno, T., Narita, A., Morikawa, N., Fujiwara, H. & Fukushima, Y., 2006. A new attenuation relation for strong ground motion in Japan based on recorded data, Bull. seism. Soc. Am., 96(3), 879–897. Kasahara,K.,1960.Anattempttodetectazimutheffectonspectralstructures of seismic waves (The Alaskan Earthquakes of April 7, 1958), Bull. Earthq. Res. Inst., 38, 207–218. Malagnini, L., Herrmann, R. & Di Bona, M., 2000. Ground-motion scaling in the Apennines (Italy), Bull. seism. Soc. Am., 90(4), 1062–1081. Malagnini, L., Akinci, A., Herrman, R.B., Pino, N.A. & Scognamiglio, L., 2002. Characteristics of the ground motion in northeastern Italy, Bull. seism. Soc. Am., 92(6), 2186–2204. Michelini, A., Faenza, L., Lauciani, V. & Malagnini, L., 2008. ShakeMap implementation in Italy, Seism. Res. Lett., 79, 689–698. Okada, T., Umino, N. & Hasegawa, A., 2010. Deep structure of the Ou mountain range strain concentration zone and the focal area of the 2008 Iwate–Miyagi Nairiku earthquake, NE Japan seismogenesis related with magma and crustal fluid, Earth Planets Space, 62, 347–352. Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H. & Yamamoto, A., 2004. Recent progress of seismic observation networks in Japan Hi-net, F-net, K-NET and KiK-net, Earth Planets Space, 56, xv–xxviii. Piatanesi, A., Cirella, A., Spudich, P. & Cocco, M., 2007. A global search inversion for earthquake kinematic rupture history: application to the 2000 western Tottori, Japan earthquake, J. geophys. Res., 112, B07314, doi:10.1029/2006JB004821. Power, M., Chiou, B., Abrahamson, N., Bozorgnia, Y., Shantz, T. & Roblee, C., 2008. An overview of the NGA project, Earthq. Spectra, 24, 3–21. Pulido,N.&Dalguer,L.A.,2009.Estimationofthehigh-frequencyradiation ofthe2000Tottori(Japan)earthquakebasedonadynamicmodeloffault rupture: application to the strong ground motion simulation, Bull. seism. Soc. Am., 99, 2305–2322. Savoia, M., Mazzotti, C., Buratti, N., Ferracuti, B., Bovo, M., Ligabue, V. & Vincenzi, L., 2012. Damages and collapses in industrial precast buildings after the Emilia earthquake, Ing. Sismica, 2–3, 120–131, ISSN: 0393-1420. Somerville, P., Smith, N. & Graves, R., 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity, Seism. Res. Lett., 68, 199–222. Smith, W.H.F. & Wessel, P., 1990. Gridding with continuous curvature splines in tension, Geophysics, 55, 293–305. Spagnuolo, E., Herrero, A. & Cultrera, G., 2012. The effect of directivity in a PSHA framework, Geophys. J. Int., 191(2), 616–626.Spudich, P. & Chiou, B.S., 2008. Directivity in NGA earthquake ground motions: analysis using isochrone theory, Earthq. Spectra, 24(1), 279– 298. Spudich, P. & Frazer, L., 1984. Use of ray theory to calculate highfrequency radiation from earthquake sources having spatially variable rupture velocity and stress drop, Bull. seism. Soc. Am., 74(6), 2061– 2082. Wald, D., Quitoriano, V., Heaton, T., Kanamori, H., Scrivner, C.W. & Worden, C.B., 1999. TriNet ShakeMaps: rapid generation of instrumental ground motion and intensity maps for earthquakes in Southern California, Earthq. Spectra, 15, 537–556. Wald, D.C. & Allen, T., 2007. Topographic slope as a proxy for seismic site condition and amplification, Bull. seism. Soc. Am., 97(5), 1379–1395. Wald, D.J., Worden, C., Quitoriano, V. & Pankow, K.L., 2006. ShakeMap manual,technicalmanual,usersguide,andsoftwareguide,156pp.Available at: http://pubs.usgs.gov/tm/2005/12A01/pdf/508TM12-A1.pdf. Last accessed 27 May 2013. Wang, Z., Fukao, Y., Kodaira, S. & Huang, R., 2008. Role of fluids in the initiation of the 2008 Iwate earthquake (M 7.2) in northeast Japan, Geophys. Res. Lett., 35, L24303, doi:10.1029/2008GL035869. Warren, L.M. & Shearer, P.M., 2006. Systematic determination of earthquake rupture directivity and fault planes from analysis of long-period P-wave spectra, Geophys. J. Int., 164, 46–62. Wessel,P.&Smith,W.H.F.,1991.Freesoftwarehelpsmapanddisplaydata, EOS, Trans. Am. geophys. Un., 72, 441–446. Worden,C.B.,Wald,D.J.,Allen,T.I.,Lin,K.,Garcia,D.&Cua,G.,2010.A revisedground-motionandintensityinterpolationschemeforShakeMap, Bull. seism. Soc. Am., 100(6), 3083–3096. Yamada, M., Mori, J. & Heaton, T., 2009. The slapdown phase in highacceleration records of large earthquakes, Seism. Res. Lett., 80(4), 559– 564. Zhao, J.X. et al., 2006. Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bull. seism. Soc. Am., 96(3), 898–913.en
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.obiettivoSpecifico4T. Fisica dei terremoti e scenari cosismicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorSpagnuolo, E.en
dc.contributor.authorFaenza, L.en
dc.contributor.authorCultrera, G.en
dc.contributor.authorHerrero, A.en
dc.contributor.authorMichelini, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-1377-5812-
crisitem.author.orcid0000-0002-6135-1141-
crisitem.author.orcid0000-0002-3335-5655-
crisitem.author.orcid0000-0001-5633-5852-
crisitem.author.orcid0000-0001-6716-8551-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Geophys. J. Int.-2013-Spagnuolo-gji_ggt195.pdfPaper5.27 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

3
checked on Feb 10, 2021

Page view(s) 20

444
checked on Mar 27, 2024

Download(s) 50

84
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric