Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10001
DC FieldValueLanguage
dc.contributor.authorallLorito, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSelva, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallBasili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRomano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTiberti, M. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2015-06-16T12:11:00Zen
dc.date.available2015-06-16T12:11:00Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/2122/10001en
dc.description.abstractProbabilistic tsunami hazard analysis (PTHA) relies on computationally demanding numerical simulations of tsunami generation, propagation, and non-linear inundation on high-resolution topo-bathymetric models. Here we focus on tsunamis generated by co-seismic sea floor dis- placement, that is, on Seismic PTHA (SPTHA). A very large number of tsunami simulations are typically needed to incorporate in SPTHA the full expected variability of seismic sources (the aleatory uncertainty). We propose an approach for reducing their number. To this end, we (i) introduce a simplified event tree to achieve an effective and consistent exploration of the seismic source parameter space; (ii) use the computationally inexpensive linear approximation for tsunami propagation to construct a preliminary SPTHA that calculates the probability of maximum offshore tsunami wave height (H Max) at a given target site; (iii) apply a two-stage filtering procedure to these ‘linear’ SPTHA results, for selecting a reduced set of sources and (iv) calculate ‘non-linear’ probabilistic inundation maps at the target site, using only the selected sources. We find that the selection of the important sources needed for approximating probabilistic inundation maps can be obtained based on the offshore HMax values only. The filtering procedure is semi-automatic and can be easily repeated for any target sites. We describe and test the performances of our approach with a case study in the Mediterranean that considers potential subduction earthquakes on a section of the Hellenic Arc, three target sites on the coast of eastern Sicily and one site on the coast of southern Crete. The comparison between the filtered SPTHA results and those obtained for the full set of sources indicates that our approach allows for a 75–80 per cent reduction of the number of the numerical simulations needed, while preserving the accuracy of probabilistic inundation maps to a reasonable degree.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/200 (2015)en
dc.subjectTsunamien
dc.subjectHazarden
dc.subjectProbabilisticen
dc.subjectSubductionen
dc.subjectMediterraneanen
dc.subjectSPTHAen
dc.titleProbabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation mapsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber574-588en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.identifier.doi10.1093/gji/ggu408en
dc.relation.referencesAnderberg, M.R., 1973. Cluster Analysis for Applications, Academic Press. Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K. & Shuto, N., 2007. Logic-tree approach for probabilistic tsunami hazard analysis and its ap- plications to the Japanese coasts, Pure appl. Geophys., 164, 577–592. Basili, R., Tiberti, M.M., Kastelic, V., Romano, F., Piatanesi, A., Selva, J. & Lorito, S., 2013. Integrating geologic fault data into tsunami hazard studies, Nat. Hazards Earth Syst. Sci., 13, 1025–1050. Bazzurro, P. & Cornell, C.A., 1999. Disaggregation of seismic hazard, Bull. seism. Soc. Am., 89, 501–520. Bilek, S.L. & Lay, T., 1999. Rigidity variations with depth along in- terplate megathrust faults in subduction zones, Nature, 400, 443, doi:10.1038/22739. Blaser, L., Kru ̈ger, F., Ohrnberger, M. & Scherbaum, F., 2010. Scaling relations of earthquake source parameter estimates with special fo- cus on subduction environment, Bull. seism. Soc. Am., 100(6), 2914– 2926. Bommer, J.J. & Scherbaum, F., 2008. The use and misuse of logic trees in probabilistic seismic hazard analysis, Earthq. Spectra, 24(4), 997– 1009. Burbidge, D., Cummins, P., Mleczko, R. & Thio, H., 2008. A Probabilistic tsunami hazard assessment for Western Australia, Pure appl. Geophys., 165, 2059–2088. Cirella, A., Piatanesi, A., Tinti, E., Chini, M. & Cocco, M., 2012. Com- plexity of the rupture process during the 2009 L’Aquila, Italy, earthquake, Geophys. J. Int., 190, 1, 607–621. Cirella, A., Piatanesi, A., Tinti, E. & Cocco, M., 2008. Rupture process of the 2007 Niigata-ken Chuetsu-oki earthquake by non-linear joint inver- sion of strong motion and GPS data, Geophys. Res. Lett., 35, L16306, doi:10.1029/2008GL034756. Clifton, A. & Ericson, II, 2005. Hazard Analysis Techniques for System Safety, John Wiley & Sons, Inc., 528 pp. Cornell, C.A., 1968. Engineering seismic risk analysis, Bull. seism. Soc. Am., 58, 1583–1606. Cornell, C. & Krawinkle, H., 2000. Progress and challenges in seis- mic performance assessment, PEER Center News 3(2), Available at: http://peer.berkeley.edu/news/2000spring/index.html, last accessed 14 November 2014. Davis, J.C., 2002. Statistics and Data Analysis in Geology, John Wiley and Sons. De Martini, P.M., Barbano, M.S., Smedile, A., Gerardi, F., Pantosti, D., Del Carlo, P. & Pirrotta, C., 2010. A unique 4000-year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy), Mar. Geol., 276, 42–57. Geist, E.L., 2002. Complex earthquake rupture and local tsunamis, J. geo- phys. Res., 107(B5), doi:10.1029/2000JB000139. Geist, E. & Parsons, T., 2006. Probabilistic analysis of tsunami hazards, Nat. Hazards, 37, 277–314. Gonza ́lez, F.I. et al., 2009. Probabilistic tsunami hazard assessment at Sea- side, Oregon, for near- and far-field seismic sources, J. geophys. Res., 114, C11023, doi:10.1029/2008JC005132. Gonza ́lez, F.I., Le Veque, R.J. & Adams, L.M., 2013. Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA, Final Report for Phase I, Technical Report. Gonzalez, M., Medina, R., Olabarrieta, M. & Otero, L., 2010. Tsunami hazard assessment on the Southern Coast of Spain, Turkish J. Earth Sci., 19(3), 351–366. Grezio, A., Sandri, L., Marzocchi, W., Argnani, A., Gasparini, P. & Selva, J., 2012. Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy), Nat. Hazards, 64, 329–358. Guidoboni, E., Comastri, A. & Traina, G., 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century, Vol. 1, ING-SGA, 504 pp. Hartigan, J.A., 1975. Clustering Algorithms, John Wiley & Sons, Inc.. Heidarzadeh, M. & Kijko, A., 2011. A probabilistic tsunami hazard assess- ment for the Makran subduction zone at the Northwestern Indian Ocean, Nat. Hazards, 56(3), 577–593. Holschneider, M., Zo ̈ller, G., Clements, R. & Schorlemmer, D., 2014. Can we test for the maximum possible earthquake magnitude?, J. geophys. Res.: Solid Earth, 119(3), 2019–2028. Horspool, N. et al., 2014. A probabilistic tsunami hazard assessment for Indonesia, Nat. Hazards Earth Syst. Sci. Discuss., 2, 3423–3464. Kagan, Y.Y., 2002. Seismic moment distribution revisited, I. Statistical re- sults, Geophys. J. Int., 148, 520–541. Kagan, Y.Y. & Jackson, D.D., 2013. Tohoku earthquake: a surprise?, Bull. seism. Soc. Am., 103(2B), 1181–1194. Kanamori, H. & Brodsky, E.E., 2001. The physics of earthquakes, Phys. Today, 54(6), 34–40. Kervella, Y., Dutykh, D. & Dias, F., 2007. Comparison between three- dimensional linear and nonlinear tsunami generation models, Theor. Com- put. Fluid Dyn., 21, 245–269. Lane, E.M., Gillibrand, P.A. & Wang, X.A, 2013. Probabilistic tsunami hazard study of the Auckland region, Part II: inundation mod- elling and hazard assessment, Pure appl. Geophys., 170(9–10), 1635– 1646. Lay, T. & Kanamori, H., 2011. Insights from the great 2011 Japan earth- quake, Phys. Today, 64(12), 33–39. Leonard, L.J., Rogers, G.C. & Mazzotti, S., 2014. Tsunami hazard assess- ment of Canada, Nat. Hazards, 70(1), 237–274. Liu, Y., Santos, A. & Wang, S.M., 2007. Tsunami hazards along Chinese coast from potential earthquakes in South China Sea, Phys. Earth planet. Int., 163(1–4), 233–244. Lorito, S., Tiberti, M.M., Basili, R., Piatanesi, A. & Valensise, G., 2008a. Earthquake-generated tsunamis in the Mediterranean Sea: scenarios of potential threats to Southern Italy, J. geophys. Res., 113, B01301, doi:10.1029/2007JB004943. Lorito, S., Piatanesi, A. & Lomax, A., 2008b. Rupture process of the 18 April 1906 California earthquake from near-field tsunami waveform inversion, Bull. seism. Soc. Am., 98, 832–845. Lorito, S., Piatanesi, A., Cannelli, V., Romano, F. & Melini, D., 2010. Kinematics and source zone properties of the 2004 Sumatra-Andaman earthquake and tsunami: nonlinear joint inversion of tide gauge, satellite altimetry, and GPS data, J. geophys. Res., 115, B02304, doi:10.1029/2008JB005974. Lorito, S. et al., 2011. Limited overlap between the seismic gap and the coseismic slip of the great 2010 Chile earthquake, Nat. Geosci., 4, 173– 177. Løvholt,F.,Pedersen,G.,Bazin,S.,Ku ̈hn,D.,Bredesen,R.E.&Harb- itz, C., 2012. Stochastic analysis of tsunami runup due to heteroge- neous coseismic slip and dispersion, J. geophys. Res., 117, C03047, doi:10.1029/2011JC007616. Maramai, A., Brizuela, B. & Graziani, L., 2014. The Euro-Mediterranean tsunami catalogue, Ann. Geophys., 57, S0435, doi:10.4401/ag-6437. Marzocchi, W., Sandri, L. & Selva, J., 2010. BET_VH: a probabilistic tool for long-term volcanic hazard assessment, Bull. Volcanol., 72(6):717–733. Matias, L.M., Cunha, T., Annunziato, A., Baptista, M.A. & Carrilho, F., 2013. Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence, Nat. Hazards Earth Syst. Sci., 13, doi:10.5194/nhess-13-1- 2013. McCloskey, J. et al., 2007. Near-field propagation of tsunamis from megathrust earthquakes, Geophys. Res. Lett., 34, L14316, doi:10.1029/2007GL030494. Mitsoudis, D.A., Flouri, E.T., Chrysoulakis, N., Kamarianakis, Y., Okal, E. & Synolakis, C.E., 2012. Tsunami hazard in the southeast Aegean Sea, Coast. Eng., 60, 136–148. Mulargia, F. & Tinti, S., 1985. Seismic sample areas defined from incomplete catalogs: an application to the Italian territory, Phys. Earth. planet. Int., 40, 273–300. Mulargia, F., Gasperini, P. & Tinti, S., 1987. Identifying different regimes in eruptive activity: an application to Etna volcano, J. Volc. Geotherm. Res., 34, 89–106. Newhall, C.G. & Hoblitt, R.P., 2002. Constructing event trees for volcanic crises, Bull. Volcanol., 64, 3–20. NGDC/WDS, National Geophysical Data Center/World Data Sys- tem, Global Historical Tsunami Database, National Geophysi- cal Data Center, NOAA, doi:10.7289/V5PN93H7, Available at http://www.ngdc.noaa.gov/hazard/tsu.shtml, last accessed 14 November 2014. Nosov, M.A. & Kolesov, S.V., 2011. Optimal initial conditions for simula- tion of seismotectonic tsunamis, Pure appl. Geophys., 168(6–7), 1223– 1237. Omira, R., Baptista, M.A., Matias, L.M., Miranda, J.M. & Carrilho, F., 2013. Probabilistic tsunami hazard in the North East Atlantic due to seismic sources, implications for NEAMTWS, in Proceedings of the 2013 AGU Fall Meeting, NH41B-1710. Papazachos, B. & Papazachou, C., 1997. The Earthquakes of Greece, Ziti Publ., 304 pp. Parsons, T. & Geist, E.L., 2009. Tsunami probability in the Caribbean region, Pure appl. Geophys., 165, 2089–2116. Piatanesi, A. & Lorito, S., 2007. Rupture process of the 2004 Sumatra- Andaman earthquake from tsunami waveform inversion, Bull. seism. Soc. Am., 97(1A), S223–S231. Polonia, A., Bonatti, E., Camerlenghi, A., Lucchi, R.G., Panieri, G. & Gasperini, L., 2013. Mediterranean megaturbidite triggered by the AD 365 Crete earthquake and tsunami, Sci. Rep., 3(1285), doi: 10.1038/srep01285. Priestley, M.B., 1981. Spectral Analysis and Time Series, Elsevier. Rikitake, T. & Aida, I., 1988. Tsunami hazard probability in Japan, Bull. seism. Soc. Am., 78, 268–1278. Romano, F., Piatanesi, A., Lorito, S., D’Agostino, N., Hirata, K., Atzori, S., Yamazaki, Y. & Cocco, M., 2012. Clues form joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake, Sci. Rep., 385, doi:10.1038/srep00385. Romano, F., Piatanesi, A., Lorito, S. & Hirata, K., 2010. Slip distribu- tion of the 2003 Tokachi-oki Mw 8.1 earthquake from joint inversion of tsunami waveforms and geodetic data, J. geophys. Res., 115, B11313, doi:10.1029/2009JB006665. Romano, F. et al., 2014. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data, Sci. Rep., 4, doi:10.1038/srep05631. Rong, Y., Jackson, D.D., Magistrale, H. & Goldfinger, C., 2014. Magnitude limits of subduction zone earthquakes, Bull. seism. Soc. Am., 104(5), 2359–2377. Satake, K, Fujii, Y., Harada, T. & Namegaya, Y., 2013. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as in- ferred from tsunami waveform data, Bull. seism. Soc. Am., 103, 1473– 1492. Selva, J., Marzocchi, W., Papale, P. & Sandri, L., 2012. Operational eruption forecasting at high-risk volcanoes: the case of Campi Flegrei, Naples, J. Appl. Volcanol., 1(5), doi:10.1186/2191-5040-1-5. Shaw, B. et al., 2008. Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake, Nat. Geosci., 1, 268–276. Sørensen, M.B., Spada, M., Babeyko, A., Wiemer, S. & Gru ̈nthal, G., 2012. Probabilistic tsunami hazard in the Mediterranean Sea, J. geophys. Res., 117, B01305, doi:10.1029/2010JB008169. SSHAC [Senior Seismic Hazard Analysis Committee, R.J. Budnitz, Chair- man, G. Apostolakis, D.M. Boore, L.S. Cluff, K.J. Coppersmith, C.A. Cornell & P.A. Morris], 1997. Recommendations for Probabilistic Seis- mic Hazard Analysis: Guidance on Uncertainty and Use of Experts. NUREG/CR6372, US Nuclear Regulatory Commission. Stein, S., Geller, R.J. & Liu, M., 2012. Why earthquake hazard maps often fail and what to do about it, Tectonophysics, 562–563, 1–25. Suppasri, A., Imamura, F. & Koshimura, S., 2012. Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand, J. Earthq. Tsunami, 6(2), doi:10.1142/S179343111250011X. Tarassenko, L., 1998. A Guide to Neural Computing Applications, Arnold. Thio, H.K., Somerville, P. & Ichinose, G., 2007. Probabilistic analysis of strong ground motion and tsunami hazards in Southeast Asia, J. Earthq. Tsunami, 1(2), 119–137. Thio, H.K., Somerville, P. & Polet, J., 2010. Probabilistic tsunami hazard in California. Pacific Earthquake Engineering Research Center, PEER Report 2010/108, University of California, Berkeley. Tiberti, M., Lorito, S., Basili, R., Kastelic, V., Piatanesi, A. & Valensise, G., 2008. Scenarios of earthquake-generated tsunamis for the Italian coast of the Adriatic Sea, Pure appl. Geophys., 165, 2117–2142. Tinti, S., Armigliato, A., Pagnoni, G. & Zaniboni, F., 2005. Scenarios of giant tsunamis of tectonic origin in the Mediterranean, ISET J. Earthq. Technol., 42, 171–188. Tonini, R., Armigliato, A., Pagnoni, G., Zaniboni, F. & Tinti, S., 2011. Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA), Nat. Hazards Earth Syst. Sci., 11, 1217–1232. Wendt, J., Oglesby, D.D. & Geist, E.L., 2009. Tsunamis and splay fault dynamics, Geophys. Res. Lett., 36, L15303, doi:10.1029/2009GL038295.en
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorLorito, S.en
dc.contributor.authorSelva, J.en
dc.contributor.authorBasili, R.en
dc.contributor.authorRomano, F.en
dc.contributor.authorTiberti, M. M.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-1458-2131-
crisitem.author.orcid0000-0001-6263-6934-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.orcid0000-0003-2725-3596-
crisitem.author.orcid0000-0003-2504-853X-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lorito_GJI_2015.pdfMain article3.62 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

44
checked on Feb 10, 2021

Page view(s) 5

784
checked on Apr 24, 2024

Download(s) 50

103
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric