Now showing 1 - 2 of 2
  • Publication
    Open Access
    Deposit‐Derived Block‐and‐Ash Flows: The Hazard Posed by Perched Temporary Tephra Accumulations on Volcanoes; 2018 Fuego Disaster, Guatemala
    The impact of hazardous pyroclastic density currents (PDCs) increases with runout distance, which is strongly influenced by the mass flux. This article shows that the mass flux of a PDC may derive not only from vent discharge during the eruption, but also from partly hot, temporary stores (accumulations) of aerated pyroclastic material perched high on the volcano. The unforeseen PDC at Fuego volcano (Guatemala) on 3 June 2018 happened c.1.5 hr after the eruption climax. It overran the village of San Miguel Los Lotes causing an estimated 400+ fatalities. Analysis of the facies architecture of the deposit combined with video footage shows that a pulsatory block-and-ash flow flowed down the Las Lajas valley and rapidly waxed, the runout briefly increasing to 12.2 km as it filled and then spilled out of river channels, entered a second valley where it devastated the village and became increasingly erosive, prior to waning. Paleomagnetic analysis shows that the PDC contained only 6% very hot (>590°C) clasts, 39% moderately hot (∼200°C–500°C) clasts, and 51% cool (<200°C) clasts. This reveals that the block-and-ash flow mostly derived from collapse of loose and partly hot pyroclastic deposits, stored high on the volcano, gradually accumulated during the last 2–3 years. Progressive collapse of unstable deposits supplied the block-and-ash flow, causing a bulk-up process, waxing flow, channel overspill and unexpected runout. The study demonstrates that deposit-derived pyroclastic currents from perched temporary tephra stores pose a particular hazard that is easy to overlook and requires a new, different approach to hazard assessment and monitoring.
      277  59
  • Publication
    Restricted
    Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano
    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica- rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular at- tention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events re- ported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dis- persal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occur- rence of another ignimbrite-forming eruption sometime in the future.
      294  10