Now showing 1 - 4 of 4
  • Publication
    Open Access
    The science case for the EISCAT_3D radar
    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005–2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010–2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who are listed as authors, thanks are due to many others in the EISCAT scientific community for useful contributions, discussions, and support.
      101  105
  • Publication
    Open Access
    Space weather challenges of the polar cap ionosphere
    (2013-01) ; ; ; ; ; ;
    Moen, J.; Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway
    ;
    Oksavik, K.; Department of Physics and Technology, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
    ;
    Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
    ;
    Daabakk, Y.; Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway
    ;
    Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
    ;
    Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
    ;
    ; ; ; ; ;
    This paper presents research on polar cap ionosphere space weather phenomena conducted during the European Cooperation in Science and Technology (COST) action ES0803 from 2008 to 2012. The main part of the work has been directed toward the study of plasma instabilities and scintillations in association with cusp flow channels and polar cap electron density structures/patches, which is considered as critical knowledge in order to develop forecast models for scintillations in the polar cap. We have approached this problem by multi-instrument techniques that comprise the EISCAT Svalbard Radar, SuperDARN radars, in-situ rocket, and GPS scintillation measurements. The Discussion section aims to unify the bits and pieces of highly specialized information from several papers into a generalized picture. The cusp ionosphere appears as a hot region in GPS scintillation climatology maps. Our results are consistent with the existing view that scintillations in the cusp and the polar cap ionosphere are mainly due to multi-scale structures generated by instability processes associated with the cross-polar transport of polar cap patches. We have demonstrated that the SuperDARN convection model can be used to track these patches backward and forward in time. Hence, once a patch has been detected in the cusp inflow region, SuperDARN can be used to forecast its destination in the future. However, the high-density gradient of polar cap patches is not the only prerequisite for high-latitude scintillations. Unprecedented highresolution rocket measurements reveal that the cusp ionosphere is associated with filamentary precipitation giving rise to kilometer scale gradients onto which the gradient drift instability can operate very efficiently. Cusp ionosphere scintillations also occur during IMF BZ north conditions, which further substantiates that particle precipitation can play a key role to initialize plasma structuring. Furthermore, the cusp is associated with flow channels and strong flow shears, and we have demonstrated that the Kelvin- Helmholtz instability process may be efficiently driven by reversed flow events.
      380  406
  • Publication
    Open Access
    Investigation of Ionospheric Small‐Scale Plasma Structures Associated With Particle Precipitation
    We investigate the role of auroral particle precipitation in small-scale (below hundreds of meters) plasma structuring in the auroral ionosphere over the Arctic. In this scope, we analyze together data recorded by an Ionospheric Scintillation Monitor Receiver (ISMR) of Global Navigation Satellite System (GNSS) signals and by an All-Sky Imager located in Longyearbyen, Svalbard (Norway). We leverage on the raw GNSS samples provided at 50 Hz by the ISMR to evaluate amplitude and phase scintillation indices at 1 s time resolution and the Ionosphere-Free Linear Combination at 20 ms time resolution. The simultaneous use of the 1 s GNSS-based scintillation indices allows identifying the scale size of the irregularities involved in plasma structuring in the range of small (up to few hundreds of meters) and medium-scale size ranges (up to few kilometers) for GNSS frequencies and observational geometry. Additionally, they allow identifying the diffractive and refractive nature of fluctuations on the recorded GNSS signals. Six strong auroral events and their effects on plasma structuring are studied. Plasma structuring down to scales of hundreds of meters is seen when strong gradients in auroral emissions at 557.7 nm cross the line of sight between the GNSS satellite and receiver. Local magnetic field measurements confirm small-scale structuring processes coinciding with intensification of ionospheric currents. Since 557.7 nm emissions primarily originate from the ionospheric E-region, plasma instabilities from particle precipitation at E-region altitudes are considered to be responsible for the signatures of small-scale plasma structuring highlighted in the GNSS scintillation data.
      46  23
  • Publication
    Restricted
    GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere
    (2014-10-16) ; ; ; ; ;
    Van Der Meeren, C.; Birkeland Centre for Space Science
    ;
    Oksavik, K.; Birkeland Centre for Space Science
    ;
    Lorentzen, D.; University Centre in Svalbard
    ;
    Moen, J. I.; University Centre in Svalbard
    ;
    Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
    ;
    ; ; ; ;
    In this paper we study a tongue of ionization (TOI) on 31 October 2011 which stretched across the polar cap from the Canadian dayside sector to Svalbard in the nightside ionosphere. The TOI front arrived over Svalbard around 1930 UT. We have investigated GPS scintillation and irregularities in relation to this TOI front. This is the first study presenting such detailed multi-instrument data of scintillation and irregularities in relation to a TOI front. Combining data from an all-sky imager, the European Incoherent Scatter Svalbard Radar, the Super Dual Auroral Radar Network Hankasalmi radar, and three GPS scintillation and total electron content (TEC) monitors in Longyearbyen and Ny-Ålesund, we observe bursts of phase scintillation and no amplitude scintillation in relation to the leading gradient of the TOI. Spectrograms of 50Hz phase measurements show highly localized and variable structuring of the TOI leading gradient, with no structuring or scintillation within the TOI or ahead of the TOI.
      504  90