Now showing 1 - 2 of 2
  • Publication
    Open Access
    First evidences of fast creeping on a long-lasting quiescent earthquake normal-fault in the Mediterranean
    A key issue in our understanding of the earthquake cycle and seismic hazard is the behaviour of an active fault during the interseismic phase. Locked and creeping faults represent two end-members of mechanical behaviours that are given two extreme rupturing hazard levels, that is, high and low, respectively. Geophysical and space geodetic analyses are carried out over the Pollino Range, an extensional environment within the Africa–Eurasia plate boundary, to disclose the behaviour of the long-lasting quiescent Castrovillari normal fault. Fault trenching evidenced at least four large earthquakes (6.5–7.0 M w ) in the past and an elapsed time of 1200 yr since the last event. Inversion of Differential Interferometric Synthetic Aperture Radar and Global Positioning System over a decade shows fast creeping at all depths of the fault plane. The velocity-strengthening creeping zone reaches maximum rates 20 mm yr −1 against an average rate of about 3–9 mm yr −1 . It limits the southern-weakening locked part of the fault. An essential condition for the generation of a large earthquake on the Castrovillari fault, as has occurred in the past, is a rupture through the velocity-strengthening zone. The Castrovillari fault yields the best evidence for being both a strong and weak fault during its earthquake cycle. Creeping at rates faster than its tectonically driven ones, it must thus consist of a mix of unstable and conditionally stable patches ready to sustain a sizeable earthquake. Quantifying and mapping the slip rate over the fault plane is important because they influence fault moment budget estimate and helps to constrain constitutive laws of fault zones. Aseismic slip also redistributes stress in the crust, thereby affecting the locations of future earthquakes.
      167  69
  • Publication
    Restricted
    Lithospheric rheology in southern Italy inferred from postseismic viscoelastic relaxation following the 1980 Irpinia earthquake
    (2005) ; ; ; ;
    Dalla Via, G.; Università degli Studi di Milano, Dipartimento di Scienze della Terra, sezione di Geofisica
    ;
    Sabadini, R.; Università degli Studi di Milano, Dipartimento di Scienze della Terra, sezione di Geofisica
    ;
    De Natale, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    Pingue, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
    ;
    ; ; ;
    Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
      293  81